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Abstract: The conventional view suggests that the subduction of the South China Sea plate beneath Luzon occurred due to the oceanic
lithosphere’s high density, facilitating subduction initiation. However, before the South China Sea opened, a continental margin likely
existed, meaning that Luzon was directly adjacent to the continental margin rather than the oceanic basin. This would make subduction
initiation  more  challenging.  Here,  we propose  a  new model  suggesting that  during the  formation of  the  South  China  Sea,  extensive
mafic  magmatic  underplating  occurred  along  its  continental  margin.  The  high-density  magmatic  additions  may  have  increased  the
overall density of the continental margin, potentially exceeding that of Luzon, thereby enabling subduction to proceed.
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摘要：传统观点认为，中国南海板块在吕宋岛下方的俯冲是由于海洋岩石圈密度较高，从而促进了俯冲的发生。

然而，在中国南海形成之前，该区域可能存在大陆边缘，这意味着吕宋岛直接与大陆边缘相邻，而非海洋盆地。

这种地质环境使得俯冲的起始过程变得更加困难。本研究提出一个新的模型，认为在中国南海形成的过程中，

沿其大陆边缘发生了广泛的基性岩浆底侵。高密度岩浆的加入可能导致大陆边缘整体密度增加，使其可能超过

吕宋岛的密度，从而使俯冲得以顺利进行。
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1　Introduction

The  dynamics  and  mechanisms  of  subduction
initiation  have  long  been  a  central  topic  in  geological
research[1].  In  intra-oceanic  settings,  subduction—
whether induced or spontaneous—is commonly under-

stood  to  occur  when  an  older,  denser  oceanic  plate
sinks  beneath  a  younger,  less  dense  plate[2].  However,
the South China Sea plate ( ~ 33-16 Ma), despite being
relatively  young,  is  subducting  beneath  the  older
western  Philippine  Sea  plate  ( ~ 59-33 Ma)  along  the
Manila  Trench[3]  (Fig.1).  This  atypical  subduction
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scenario  challenges  conventional  models  and
necessitates a reevaluation of the underlying processes
governing intra-oceanic subduction initiation.

A  previous  study[6]  attributed  this  atypical
subduction  initiation  to  the  presence  of  micro-
continents,  which  may  act  as  triggers  for  the  process.
Specifically,  the  existence  of  microcontinental  blocks
within  the  Luzon  arc  is  supported  by  the  presence  of
ancient  zircon  in  modern  intra-oceanic  arcs.  This
model  is  compelling  as  it  facilitates  subduction
initiation by introducing these exotic components. The
concept  is  plausible,  given  that  microcontinental
blocks exhibit continental characteristics, making them
inherently less dense than the subducting South China
Sea plate.

Unfortunately,  multiple  studies  suggest  that  the
South  China  Sea  likely  has  an  eastern  continental
margin[7-9]. If true, this implies that Luzon was directly
adjacent  to  the  continental  margin  rather  than  an
oceanic  basin.  Such  a  configuration  complicates  sub-
duction  initiation,  as  a  continental  margin  subducting

beneath a microcontinent presents a unique challenge,
given that both share continental characteristics.

In this study, we attribute subduction initiation to
lower-crustal  mafic  intrusions  within  the  continental
margin, which facilitate the progression of subduction.
The  following  section  will  further  elaborate  on  this
process. 

2　Lower-crustal mafic intrusions promoting
subduction initiation 

2.1　Lower crustal mafic intrusions

High-velocity,  high-density  anomalies  in  the
continental  lower  crust  have  been  widely  detected
across the northern[10], southern[11-12], and northeastern[13-15]

margins of the South China Sea. These anomalies have
been  attributed  to  either  magmatic  activity  associated
with  paleo-Pacific  subduction  or  post-rift  magmatic
modification[14].  They play a crucial role in subducting
plate deformation and hydration processes, particularly
in  interactions  with  the  Manila  Trench[16].  Existing
observations  indicate  that  high-density  anomalies  are
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Fig.1　Topography and tectonic framework of the Philippine-Manila-Taiwan region.
Red arrows indicate the movement direction of the Philippine Sea Plate and
the South China Sea[4]. Red triangles mark active volcanoes. Dashed red lines,
along  with  adjacent  numbers,  represent  the  depth  contours  of  the  eastern
subducting Manila slab at 40 km intervals, based on the Slab 2 model[5]

2 CT理论与应用研究（中英文） 34卷



widely distributed along the continental margins of the
South China Sea.

Therefore,  it  is  reasonable  to  infer  that  similar
anomalies were also present along the eastern margin,
though  most  have  since  been  subducted  into  the  deep
mantle. 

2.2　New subduction initiation model

The  key  factor  in  subduction  initiation  is  the
density  contrast  between  two  colliding  lithospheres[1].
Given that the high-velocity anomaly in the lower crust
suggests  increased  density,  we  propose  that  it  plays  a
critical  role  in  facilitating  subduction  initiation.
Without  intrusive  materials,  the  density  difference
between  the  continental  margin  and  Luzon  may  be
insufficient  to  drive  subduction.  However,  after  mafic
intrusions, the continental margin becomes denser than

Luzon,  enabling  subduction  to  proceed.  An  evolu-
tionary  model  illustrating  subduction  initiation  along
the Manila Trench is presented in Fig.2.

Key  components  of  this  conceptual  framework
include  magmatic  intrusions  driven  by  Paleo-Pacific
subduction,  post-spreading  magmatic  activity,  and  the
transformation  of  mafic  intrusions  into  eclogites
following  collision-induced  crustal  thickening,
ultimately leading to continental margin break-off.

Recent  regional  seismic  tomography[17],  has
identified  aseismic  high-velocity  anomalies  beneath
Luzon  at  depths  greater  than  300  km,  which  may
reflect  remnants  of  the  South  China  Sea's  continental
margins.  These  anomalies  appear  to  have  partially
detached  from  the  subducted  South  China  Sea  slab,
thereby  reinforcing  the  plausibility  of  the  model
proposed in this study. 
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Fig.2　A schematic model  illustrating the evolutionary processes driving the transition from a
continental margin to oceanic subduction. The shift from Paleo-Pacific plate subduction
to a transcompression regime is based on two studies[7,9]. The timing of South China Sea
subduction initiation follows a previous work[9], while the evolutionary history related to
Paleo-Pacific plate subduction is derived from a previous work[14]
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3　Summary

This study revisits the conventional understanding
of  South  China  Sea  subduction  beneath  Luzon  by
introducing  a  new  model.  Traditionally,  subduction
initiation was thought to be driven by the high density
of  oceanic  lithosphere.  However,  before  the  South
China Sea opened, a continental margin likely existed,
complicating direct subduction.

Our  findings  suggest  that  extensive  mafic
magmatic  underplating  during  South  China  Sea
expansion  increased  the  density  of  the  continental
margin,  potentially  surpassing  that  of  Luzon.  This
density  contrast  could  have  facilitated  subduction,
offering new insights into the geodynamic evolution of
the  region.  In  the  future,  plate  reconstruction  studies
combined  with  numerical  modeling  will  provide
deeper  insights  into  the  role  of  lower-crustal  mafic
intrusions in intra-oceanic subduction initiation.
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