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The northeastern margin of the South China Sea (SCS) is characterized by a tectonic shift from subduction in the
south to arc-continent collision in the north. We describe the intraplate crustal-scale structure and deformation
along a 256-km-long wide-angle reflection/refraction line perpendicular to the Manila Trench (MT). It is found
that 1) the subducting plate of the northeast SCS comprises thinned continental crust with a thickness of 12-15
km and a high-velocity layer (HVL) with a thickness of 2-4 km, which is likely caused by (ultra)mafic intrusions;

2) the subducted upper crust is partly scraped off and accreted at the bottom of the accretionary wedge, and its
characteristic low seismic-velocity may be due to subsequent hydration. Combined with previous investigations
from six seismic lines in the study area across the MT and Southern Taiwan, from south to north, the velocity
anomaly at the bottom of the accretionary wedge correspondingly undergoes a series of metamorphic processes
in response to the transition from oceanic subduction to arc-continent collision.

1. Introduction

Since the Cenozoic, the South China Sea (SCS) has undergone a wide
range of tectonic processes, including rifting-breakup, seafloor
spreading, ridge jumps, and post-rift magmatic intrusion (Lester et al.,
2014; Liu et al., 2021; Ren et al., 2002; Ru and Pigott, 1986; Sun et al.,
2021; Wu et al., 2023; Zhao et al., 2010). The key features of the eastern
boundary lie in the Taiwan arc-continent collision zone and the Manila
Trench (MT) (Fig. 1). It is widely recognized that accretionary wedges
are formed as a result of plate subduction, and their structure is deter-
mined by the various tectonic processes at the trench (Chiu et al., 2021;
Dahlen, 1990; Tan et al., 2022). More specifically, a series of thrust
faults within the accretionary wedge are widespread on the eastern side
of the northern MT. Owing to the influence of the Taiwan arc-continent
collision, the width and height of the accretionary wedge increased
northward, accompanied by a significant change in shape (Lester et al.,
2014; Mclntosh et al., 2013; Tan et al., 2022). Previous studies on
accretionary wedges are mainly based on Multi-Channel Seismic (MCS)

profiles which reveal the geometry of internal faults (Gao et al., 2018;
Wang et al., 2019; Zhu et al., 2017), but the internal seismic velocity
structure of accretionary wedges has been rarely studied, which is the
key to revealing the underlying tectonic processes.

The nature of the subduction slab in the northern Manila subduction
zone has long been debated. Based on the magnetic data, Hsu et al.
(2004) suggested that the area south of 21.5°N is oceanic crust, as evi-
denced by the magnetic anomaly strips. Regional seismic tomography
has also favored the subduction of the oceanic crust (Amuru, 2007;
Koulakov, 2011; Li et al., 2008), but the shallow (0-100 km) subduction
slab features have barely been constrained due to limited resolution. In
recent decades, many active-source seismic surveys have been con-
ducted in the northeastern SCS (Fig. 1). These deep seismic survey lines
revealed that subduction of thinned continental crust occurs north of
~20.2°N, whereas oceanic crust subduction occurs only south of it
(Eakin et al., 2014; Liu et al., 2022; McIntosh et al., 2013). However, the
tectonic processes for the transition from subduction to collision at the
northeastern boundary of the SCS remain enigmatic.
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More importantly, the structural changes of the accretionary wedge
in the northern Manila subduction zone are significant for understand-
ing the geological evolution process from subduction to collision and
orogenic processes. Therefore, we aim to explore the seismic structure of
the subducting plate and accretionary wedge in this area with wide-
angle reflection/refraction seismic OBS data and MCS data along line
Lx3 (Fig. 1) perpendicular to the MT in the northeastern SCS. Combined
with previous results from other seismic lines in the study area, a tec-
tonic evolution model of subduction to collision is proposed.

2. Geological setting

As one of the largest marginal seas in the western Pacific, the SCS is
the product of internal tectonic processes and interactions among the
Eurasian, Philippine, Pacific, and Indo-Australian plates. During the
Cenozoic, the SCS was formed by a series of tectonic processes, including
continental margin rifting, continental crust break-up, and seafloor
spreading (Wu et al., 2023). In the early stage of SCS rifting, magmatic
activity was weak, but very strong in the post-rift stage, accompanied by
(ultra)mafic intrusions as evidenced by a widely distributed high-
velocity layer (HVL) in the lower crust and volcanic activities in the
northeastern SCS (Fan et al., 2017; Gao et al., 2015; Lester et al., 2014;
Liu et al., 2021; Nissen et al., 1995; Pan and He, 2023; Savva et al., 2014;
Wan et al., 2019; Wang et al., 2012; Xia et al., 2018; Zhao et al., 2016).
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In addition, according to their distinct origins, the HVL of the lower crust
in this area can be divided into two parts: northwest and southeast. The
former is mainly attributed to residual magmatic material of the sub-
duction of the paleo-Pacific Ocean (Cheng et al., 2021; Wan et al., 2017),
and the latter is more likely formed by underplating of post-rift magma
(Eakin et al., 2014; Lester et al., 2014; Liu et al., 2022; Wan et al., 2019;
Wang et al., 2006; Zhao et al., 2010). In particular, the HVL in the
Southern Depression of the Southwest Taiwan Basin in southwestern
Taiwan has been attributed to mantle serpentinization (Fig. 1) (Chen
et al., 2023; Liu et al., 2021; Liu et al., 2023).

At ~18 Ma, the SCS plate subducted eastward under the West Phil-
ippine Sea plate, forming the MT (Sibuet et al., 2021). In its northern
section, a subduction system consisting of the SCS Basin, the MT, the
accretionary wedge (Hengchun Ridge), the forearc basin (North Luzon
Trough), and the volcanic arc (North Luzon Arc) is sequentially formed
from west to east (Fig. 1) (Ludwig et al., 1979). The continuous sub-
duction caused the Luzon Arc to be close to the rift margin in the
northeastern SCS and began to collide at 6-7 Ma to form the Taiwan
orogenic belt (Byrne et al., 2011; Huang et al., 2006; Lin et al., 2003;
Sibuet and Hsu, 2004; Tan et al., 2022), making this section a typical
arc-continent collision setting in the world.

Orogeny in Taiwan has been suggested to go through two stages. The
first stage was the initial collision stage, which started approximately
6-7 Ma and was dominated by tectonic underplating formed by the
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Fig. 1. Bathymetric map of the northeastern South China Sea. The red solid line represents the study profile Lx3, the yellow circles and numbers represent the
positions of OBS stations, whereas the grey circle represents the station without usable data. The thin black solid lines and white circles represent the locations of
other seismic lines and OBSs in the region, respectively (Eakin et al., 2014; Lester et al., 2013, 2014; Liu et al., 2022; McIntosh et al., 2013; Wang et al., 2006). The
black line and triangles represent the Manila Trench (Sibuet et al., 2021). The continent-ocean boundary (COB) is the black solid and dotted line (Liu et al., 2022).
The orange and white dashed line represents the Southwest Taiwan Basin (SWTB) boundary, and the purple and white dashed line represents the boundary of the
Southern Depression (SD; Chen et al., 2023). HB, Huatung Basin; WPB, West Philippine Basin; GR, Gagua Ridge; HeR, Hengchun Ridge; HeP, Hengchun Peninsula;
NLT, North Luzon Trough; NLA, North Luzon Arc; DF, Deformation front. (For interpretation of the references to colour in this figure legend, the reader is referred to

the web version of this article.)
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subduction of the thinned continental crust (Lester et al., 2013; McIn-
tosh et al., 2013). The second stage was the emerging stage; at 1-2 Ma,
the continental crust began to subduct and collide, and the accretionary
wedge quickly uplifted and surfaced (Lester et al., 2013; McIntosh et al.,
2022). To Northern Taiwan, the Philippine Sea plate
subducted northward along the Ryukyu Trench beneath the Eurasian
continental margin (Klingelhoefer et al.,
experiencing a mature collision between the Philippine Sea plate litho-

2013; Tan et al.,

2012). Central Taiwan is

sphere and the Eurasian plate lithosphere. Both horizontal shortening

and vertical uplift have reached a maximum, and the topography and
thermal properties have reached a steady state, resulting in a mature
system of the accretionary wedge model (Beyssac et al.,
et al., 2018; Stolar et al., 2007; Willett and Brandon, 2002). In contrast,
Southern Taiwan is in the juvenile stage of collision; the southernmost
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3. Data and method
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part is experiencing the subduction of the Eurasian plate into the Phil-
ippine Sea plate, and the Hengchun Peninsula represents the emergence
of an accretionary wedge formed by the subduction of the Eurasian plate
along the MT (Simoes et al., 2012; Tsai et al., 2019).

3.1. Data acquisition and preprocessing

The two-dimensional OBS profile, referred to as Lx3, was recorded in
2016 by R/V Shiyan 2 of the South China Sea Institute of Oceanology,
Chinese Academy of Sciences. The seismic source system used for this
profile comprises an array of four airguns with a total volume of 6000
in® with a dominant frequency range of 3-8 Hz. 13 OBSs were deployed
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Fig. 2. Ray-tracing and travel times simulation of OBS02. (a) Vertical-component seismic record section of OBS02, and a reduced velocity of 6.0 km/s. (b) Com-
parison of the calculated travel times (black solid lines) with the observed travel times (colour lines), where Pw is the direct water wave, Ps2P is the reflection phase
of the sedimentary layer-2 basement, Pg is the refraction phase within the crust, PhP is the reflection phase of the top interface of the lower crustal high velocity
layer, and PmP is the reflection phase of the Moho surface. The colour lines’ thickness corresponds to the seismic phases’ uncertainties. (c) In the ray-tracing
simulation and P-wave velocity model, different colored ray paths correspond to the various colored travel times of the seismic phases in (b). HVL, High veloc-

ity layer.
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along the profile, and 11 OBSs were recovered. OBS03 and OBS12 were
lost, and the recovery rate was 84.6 %. Among them, OBS07 recorded no
usable data (Fig. 1). The length of the profile is 256 km, and data
acquisition proceeded from northeast to southwest. The number of shots
is 1088, the shooting interval is approximately 90 s, and the OBS station
spacing is about 15 km. The MCS data along the profile were collected
synchronously, with a length of 256 km, 4 receiver channels, and
recording length up to 10 s.

The preprocessing of OBS data included raw data transformation,
clock drift correction, shot point correction, and OBS location correc-
tion. Relocations of the instruments on the seafloor were determined by
the direct wave travel times via the Monte Carlo and least-square
methods (Du et al., 2018). The raw recorded data were compiled into
the Seismic Analysis Code (SAC) format. Then, the effective signal seg-
ments in the SAC data are selected and converted into the Society of
Exploration Geophysicists (SEGY) format. The information preserved for
each trace includes the shot number, shot time, latitude and longitude
coordinates, and water depth of the shot point in the navigation file and

Tectonophysics 902 (2025) 230684

the timer file (Qiu et al., 2011; Zhang et al., 2012). Finally, the seismic
processing software package Seismic Unix (SU) (Stockwell and Cohen,
2002) is used to filter and gain the SEGY files (Wang et al., 2016; Zhang
et al., 2018; Zhang et al., 2019) to compile a seismic record profile with
clear seismic phases such as PsP, Pg, and PmP (Figs. 2, 3 and 4).

The Lx3 profile’s MCS data are processed via format transformation,
eliminating invalid shot points, cutting and splicing, etc., and the MCS
profile is drawn using SU software for filtering, automatic gain control,
and other processes (Fig. 5).

3.2. Travel-time picking and initial model construction

A total of 4789 arrivals were manually picked up on Profile Lx3,
including 1016 direct water wave arrivals (Pw, for relocation of OBSs),
1928 refraction arrivals (Ps, Pg and Pn, representing refracted from the
sediments, crust and upper mantle, respectively), and 1845 reflection
arrivals (PsP, PaP, PhP and PmP, representing reflected from the sedi-
ment interfaces, the bottom of the low-velocity anomaly, upper interface
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Fig. 3. Ray-tracing and travel times simulation of OBS04. See the caption of Fig. 2 for details.



X. Wang et al.

T-Offset/6.0 (s)

e
% ,’ﬁ',ﬁw’rw»_"ﬁ
hre

T-Offset/6.0 (s)

||

N

—_
1

Depth (km)

N
o
1

Tectonophysics 902 (2025) 230684

Offset (km) NEE
0

Upper Mantle

e

2wl A,

A

AL

R LN
.

r"
RS

4
I bt ?&;{’
N s
o AT

o

)

o
bt

M

Low-velocity
anomaly

25 T

90 110 130 150

170 190 210

Distance (km)

Fig. 4. Ray-tracing and travel times simulation of OBS08. See the caption of Fig. 2 for details. Ps is the refracted seismic phase in the sedimentary layer, and PaP is

the reflection phase of the bottom interface of a low-velocity anomaly.

of the HVL, and bottom of the Moho, respectively) (Table 1). According
to the empirical parameterization of Zelt and Forsyth (1994), the un-
certainty range of picking is 50-100 ms (Figs. 2, 3 and 4).

The OBSO02 station (Fig. 2) observed the reflection phase of sedi-
mentary layer-2, and the Pg phase is visible, which is observed in the
range of —5 ~ —30 km on the west side and 6-34 km on the east side.
The PhP phase can be traced to —12 ~ —22 km on the west and 25-62
km on the east. The PmP phase can be traced to 27-43 km. The OBS04
station (Fig. 3) also identified the reflection phase of sedimentary layer
2, and the Pg phase has a wide range, which can be traced to —7 ~ —45
and 5-56 km. The PmP phase is difficult to identify and is only observed
in the range of —22 ~ —32 km on the west and 33-39 km on the east. At
the OBSO08 station (Fig. 4), sedimentary layers 1 and 2 refraction phases
can be identified. Compared with OBS02 and 04 stations, sedimentary
layer-1 was significantly thicker. The Pg phase only occurs within the
range of —16 ~ —45 km of the west half branch, indicating that the
terrain on the east side has changed significantly. The PaP phase can be

traced to 12-39 km, and the PmP phase is identified on both the west
and east sides.

We try our best to trace the PmP arrivals for all stations. However,
the PmP arrivals are not identified near offsets because they are affected
by direct water wave phases with intense energy. Moreover, the PmP
arrivals are also affected by the first arrivals (Ps, Pg) traveling in the
sediment and crust, respectively, when the PmP acts as second arrivals.
Meanwhile, our data shows intense energy associated with free-surface
multiples (Figs. 2, 3 and 4). We only picked up the fastest one as the first
wave phase for multiple parallel phases (Figs. 2a, 3a and 4a) formed due
to the decay of the energy. In addition, we find multiple waves associ-
ated with other interfaces in Fig. 2a (at positions around 8 s). We use the
seafloor bathymetry of the OBS station to calculate multiple waves
associated with the seafloor or at other interfaces.

The Raylnvr software (Zelt and Smith, 1992) is used for forward
modeling, and the theoretical travel times are consistent with the
observed travel times via the trial-and-error method. The length of the
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Fig. 5. (a) Original multi-channel reflection seismic profile acquired by R/V Shiyan 2. (b) Interpretation of multi-channel reflection seismic profile. The red circles
represent OBS stations. NLT, North Luzon Trough. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

Table 1
RMS misfit, * values, and picking errors for each seismic phase from forward
modeling of Profile Lx3.

Phases Travel-times RMS (ms) Xz Picking errors (ms)
Pw 1016 79 1.112 50

Ps 284 124 2.761 75

PsP 465 104 1.916 75

PaP 128 113 2.293 100

Pg 1542 82 1.198 50

PhP 382 96 1.653 75

PmP 870 83 1.224 75

Pn 102 124 2.774 100

total 4789 90 1.428

model is 256 km, and it is divided into six layers, including seawater,
sediment layer 1, sediment layer 2, upper crust, lower crust and upper
mantle, with velocities of 1.5 km/s, 2.0-2.5 km/s, 3.0-3.5 km/s,
5.0-6.4 km/s, 6.4-7.0 km/s and 8.0-8.2 km/s, respectively. In the
process of forward modeling, the accuracy of the initial forward model
greatly influences the final model, and it is also the basis of forward ray-
tracing. The accuracy of the structure of the shallow sedimentary layer
directly affects the accuracy and efficiency of RayInvr forward trial and
error simulation. For maximum accuracy, the seafloor and sedimentary
interfaces of the model are determined mainly by the MCS data.

The Tomo2d is an inversion software (Korenaga et al., 2000) that
involves joint refraction and reflection travel times. It uses the least
squares orthogonal decomposition method to solve linear equations and
invert the information of the underground velocity structure. Much less
prior information was used, and the results were more objective. In the

inversion process, the velocity in the crust is continuous, and the
reflection interface is a floating interface, so the velocity grid and
reflection interface are independent of each other. We include the
basement geometry and sediment velocities from the initial forward
model for the initial inversion model. We set the velocity to be 8.2 km/s
at a depth of 30 km. The corresponding parameters are selected ac-
cording to the length of the seismic profile, the number of OBS stations,
and the seismic phases.

4. Velocity structure
4.1. Forward velocity modeling by RayInvr

The final forward velocity structure, ray coverage density, and
comparison between the calculated and observed arrivals obtained
using RayInvr (Zelt and Smith, 1992) of Profile Lx3 are shown in Fig. 6.
The model is divided into eight layers: seawater (1.5 km/s), sediment
layer 1 (2.0-2.5 km/s), sediment layer 2 (3.0-3.5 km/s), low-velocity
anomaly (4.8-5.5 km/s), upper crust (5.0-6.4 km/s), lower crust
(6.4-6.7 km/s), HVL (7.1-7.5 km/s) and upper mantle (8.0-8.2 km/s).
The total RMS of the model fit with the data is 90 ms, and the final
normalized y? is 1.428 (Table 1), indicating that the calculated travel
times fit well with the observed travel times and that the model is close
to the reality model. It can be seen from the ray coverage density
(Fig. 6b) that the number of ray coverages in most regions is more than
ten times. The central area with dense stations and a high degree of ray
crossover is more than 30 times or even more than 100 times greater.
Except for the two ends of the model and the accretionary wedge, the
other parts of the Moho plane are relatively dense, which effectively
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Fig. 6. The forward P-wave velocity structure along profile Lx3. (a) Preferred final forward velocity model using RayInvr software (Zelt and Smith, 1992). The thick
red segments indicate where PmP arrivals constrain the Moho interface and the dotted lines represent the uncertain interface without ray coverage. The yellow circles
represent OBS stations. (b) Ray coverage density on a 0.25 km x 0.25 km grid. (c) Picked (colored) and calculated (black) traveltimes of seismic phases for all OBS
receivers in the model. NLT, North Luzon Trough; HVL, High velocity layer. (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

restricts the velocity structure.

4.2. Inverse velocity modeling by Tomo2d

An approach of combining different modeling techniques is the most
promising way to image the deeper layers of the Earth since deep crustal
structure stays out of reach of direct sampling efforts. To confirm the
validity of the RayInvr model, an inversion simulation was performed
using Tomo2d software (Korenaga et al., 2000), and the inversion ve-
locity structure was obtained (Fig. 7). Although Tomo2d requires less
prior information than RayInvr, and does not need to adjust the position
and velocity of nodes, it has many inversion parameters. We tested

several parameters to establish the initial model. The horizontal corre-
lation length is 1-1.5 km, and the vertical correlation length is 1-2 km.
The correlation length of the Moho reflector is 9 km. After three itera-
tions, the RMS misfit of the final velocity model converges to 75.5 ms,
and the final 32 value is 1.014.

The geometric shapes of the forward and inversed Moho surfaces are
the same within the 0-140 km distance range of the model (Figs. 6 and
7), and the depth is between 17-19 km. However, the Moho surface
differs significantly in the range of 140-256 km due to the poor prop-
agation of rays in the accretionary wedge and the sparse ray coverage at
the model’s margin. In this case, the Moho surface of the forward model
in this region is depicted from the results of adjacent seismic lines. In
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Moho interface (solid black line). The dashed black line indicates the Moho interface from the RayInvr model (Fig. 6). (b) Derivative weight sum (DWS) of profile Lx3

showing ray coverage throughout the model.

addition, except for the region with poor ray coverage, the crust thick-
ness of the forward and inversion models is approximately 12-15 km,
characteristic of thinned continental crust. The model results obtained
by RayInvr and Tomo2d are roughly consistent, indicating that the
preferred final velocity model (Fig. 6) is reliable.

5. Interpretations and analysis
5.1. Analysis of the P-wave velocity structure along profile Lx3

According to the seafloor topography, MCS profile and P-wave ve-
locity structure (Figs. 1, 5, 6 and 7), profile Lx3 is divided into three
regions from west to east: 0-107 km is the northeastern SCS margin,
107-217 km is the accretionary wedge, and 217-256 km is the North
Luzon Trough.

The shallow sediment strata in the range of 0-107 km was not
strongly deformed and divided into two sediment layers with P-wave
velocities of 2.0-3.0 km and 3.0-3.5 km/s, respectively. The crustal
thickness is approximately 12-15 km, which belongs to the thinned
continental crust of the SCS. We used MATLAB programs to extract the
velocity values below the basement under each station from the final
RayInvr and Tomo2d velocity structures (Fig. 8). Among them, the re-
sults of one-dimensional velocity-depth profiles beneath the OBSO01 to
OBSO05 stations also reveal that this area consists of thinned continental
crust (Fig. 8). The sediment layer’s low seismic velocity (2.7 km/s)
below the OBS04 station and the presence of normal faults, as observed
in the MCS profile (Fig. 5), may be related to plate bending. The MT is
located at 107 km, and there is a HVL of the lower crust at 0-142 km,

with a velocity of 7.1-7.5 km/s. Previous studies of Vp/Vs indicate that
the HVL in this area is a product of magmatic underplating (Wen et al.,
2021a, 2021b; Zhao et al., 2010).

The 107-217 km distance range corresponds to the accretionary
wedge. The sediment velocity decreases to 2.3-2.5 km/s at the distance
range of 107-139 km, which corresponds well to the imbricated thrust
faults in the MCS profile (Fig. 5), and the sediment velocity decreases
because water enters the fault zone. The crustal thickness is ~13 km.
The distance range of 139-217 km is the Hengchun Ridge. Due to plate
subduction, most of the material is scraped off and deposited on the
overlying plate, resulting in a ~ 78 km thick accretionary wedge. This
sediment accumulation leads to strong attenuation of seismic signals,
and the deep structure of the ridge cannot be well constrained. However,
from the one-dimensional velocity-depth profiles below the OBS06 to
OBS09 stations, it can be seen that the subducted crust belongs to the
thinned continental crust of the SCS (Fig. 8). The results obtained by
OBSO08 and 09 stations ray-tracing reveal that there is a low-velocity
anomaly (4.8-5.5 km/s) in the lower part of the accretionary wedge
compared to the subduction plate on the west side at the model distance
range of 150-215 km. The nature and genesis of the low-velocity
anomaly will be discussed in section 6.1 below. The velocity of the
sediment layer below the OBS11 is small, approximately 2.5 km/s,
corresponding to the back thrust faults of the Hengchun Ridge.

The distance range of 217-256 km is the North Luzon Trough. OBS13
is located east of the North Luzon Trough, and together with OBS11, it
yields the smaller velocity value (1.7-2.3 km/s) of the sediment layer in
the trough.
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5.2. Multi-channel seismic profile interpretations

MCS profile Lx3 clearly shows the trend of plate subduction, the
topography of the accretionary wedge and the forearc basin (Fig. 5). In
the northeastern SCS margin, the plate has not yet entered the accre-
tionary wedge and has not been affected by subduction, and the strati-
graphic continuity is good. We divided two layers of sediment; the
thickness of sediment layer 1 is approximately 0.3 s, and the thickness of
sediment layer 2 is approximately 1 s. A small number of normal faults
are observed in this region, which may be related to the subduction and
bending of the lithosphere. The basement is highly undulating and
consists of many inclined fault blocks, possibly associated with exten-
sional stretching during the rift period and magmatic intrusion during
the post-rift period (Chiu et al., 2021). The front of the Hengchun Ridge
features imbricated thrust faults and rugged topography, which gradu-
ally uplifted from west to east. The bottom of the thrust fault is a
detachment fault. The Hengchun Ridge is the uplift deformation section;
the accretionary wedge strongly uplifted, and the internal deformation
of the strata was significantly deformed, which led to the poor propa-
gation of seismic signals in the area and the inability to identify the
internal structure. The back thrust faults are identified in the eastern
part of the Hengchun Ridge. They may have been formed by the
continuous thrust extrusion of the imbricated thrust faults to the North
Luzon Trough or the compressional structure caused by the subduction
of seamounts (Li et al., 2013; Wang et al., 2019). Two layers of sediment
are also identified inside the North Luzon Arc, with an approximate
thickness of ~0.7 s. Due to continuous subduction and the thickening
and uplifting of the accretionary wedge, the North Luzon Arc has been

persistently deformed (Eakin et al., 2014).
5.3. Gravity modeling and density variation features

Gravity data are more sensitive to lateral variations in subsurface
densities, such as at subduction zones (Kashubin et al., 2017). Observed
gravity data are extracted from the global gravity dataset with a 1 min x
1 min resolution (Sandwell et al., 2013). The density values of the
seawater and homogenous mantle are assumed to 1.03 g/cm® and 3.28
g/cm?, respectively. The density of the sediment layer is calculated ac-
cording to Hamilton’s (1978) empirical law, whereas the crustal density
is obtained from Christensen and Mooney’s (1995) empirical law. MASK
simulation software (Yao et al., 2003) calculates the model’s free-air
gravity anomaly. More importantly, we extended the model by 50 km
on both sides to eliminate the influence of edge effects (Dean et al.,
2000).

The final gravity model shows that the calculated gravity anomaly
fits well with the observed gravity anomaly (Fig. 9), and the RMS misfit
is 3.62 mGal. The accretionary wedge is being compacted to some extent
due to compression, resulting in denser sediment (2.10-2.55 g/cm®)
than the subduction front (2.10-2.40 g/cm3) and the North Luzon
Trough (1.90 g/cm®). The density of the low-velocity anomaly beneath
the accretionary wedge is 2.65 g/cm®. At approximately 160 km, the
crustal density increases from 2.68 to 2.85 g/cm?® to 2.72-2.87 g/cm®,
likely caused by higher pressures. The lowest gravity anomaly is
distributed along the North Luzon Trough, reflecting the uplift of the
accretionary wedge.

The results of the gravity simulation inversion based on the velocity
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model interface are well-fitted to the globally observed gravity anoma-
lies (Fig. 9), which additionally indicates the validity and reliability of
our models (Figs. 6a and 7a).

6. Discussion
6.1. Velocity anomaly at the base of the accretionary wedge

A velocity anomaly was observed at the base of the accretionary
wedge along previous seismic lines in the northeast SCS, which has been
hypothesized to be related to the structurally underplating of thinned
continental crust to the base of the accretionary wedge (Eakin et al.,
2014; Lester et al., 2013; McIntosh et al., 2013). However, according to
the high density found at the bottom of the accretion wedge through
gravity modeling, Doo et al. (2015) & Doo et al., 2016) speculated that it
was the result of dehydration of the subducting Eurasian Plate, leading
to the serpentinized fore-arc mantle, which was then exhumed along the
subduction channel due to its positive buoyancy and weak coupling at
the subduction interface.

A velocity anomaly (4.8-5.5 km/s) is also observed at the base of the
accretionary wedge within 150-215 km along the Lx3 profile (Fig. 6).
Our velocity model (Fig. 6) and gravity model (Fig. 9b) indicate that this
structural anomaly with a velocity of 4.8-5.5 km/s and density of 2.65
g/cm® are similar to the top of the upper crust of the subducted thinned
continental crust (5.0-5.5 km/s and 2.68 g/cmg). Therefore, it is spec-
ulated that during the early rifting-breakup period, rift-related faults
and detachments contributed to the thinning of the continental crust,
which included many fault blocks in the upper crust. During the sub-
duction process, these fault blocks may have scraped off and accreted to
the bottom of the accretionary wedge in the eastern part of the trench.
Then, the subduction plate underwent metamorphic dehydration when
temperature and pressure increased during subduction. So, we further
hypothesize that water released from the subducting plate upward
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migrates to the overriding lithosphere, resulting in a low-velocity
anomaly. The “low-velocity anomaly” here refers to the lower velocity
relative to the subducting plate on the west side.

To characterize of the velocity anomaly at the bottom of the accre-
tionary wedge associated with various subduction processes with
different crustal properties, P-wave velocity structure imaging of seven
OBS profiles were collected in the northeast SCS (Fig. 10a). We refer to
the Manila transcurrent fault (MTF) proposed by the previous study
(Sibuet et al., 2021) as the eastern boundary of the accretionary wedge
(Fig. 10). In the southernmost T1 profile, the subduction of the oceanic
crust has just completed. The subduction of the thinned continental crust
is about to start (Eakin et al., 2014), leading to an oceanic subduction
setting. No velocity anomaly is detected at the bottom of the accre-
tionary wedge (Fig. 10h). In contrast, in the south, the MGL0905_27,
Lx3, T2, and OBS20152-0BS2016_1 profiles represent the subduction of
the thinned continental crust, and low-velocity anomaly is observed at
the base of the accretionary wedge (Fig. 10 b, c, f and g). When the
thinned continental crust subducted, the upper crust was scraped off and
accreted at the base of the accretionary wedge. With the subduction
proceeding, with the increase of temperature and pressure, the sub-
ducting plate undergoes a metamorphic dehydration reaction, and fluids
move upward, leading to the observed low-velocity anomaly. The T4A
and T2933 profiles in the north cross the southern tip of the Taiwan
orogenic belt (McIntosh et al., 2013). The collision of the continental
crust on the South China continental margin strongly uplifted the
accretionary wedge. The upper crust material of the scraped subduction
plate was uplifted with the accretionary wedge by upward thrusting and
compaction. Because it has been avoiding the subsequent dehydration of
the subduction plate, and the compaction-induced velocity is greater
than that of the subduction plate on the west side, showing a high-
velocity anomaly (Fig. 10d and e).

In summary, in the northeast of the SCS, oceanic crustal subduction
has limitedly influenced the thickness and width of the accretionary
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wedge, and no apparent velocity anomaly is formed at the bottom of the
wedge. In contrast, during the transition from thinned continental crust
subduction to arc-continental collision, the anomaly in the bottom of the
accretionary wedge changes from low-velocity to high-velocity, more
likely due to the transition from hydration to compaction in response to
the tectonic shift. (Fig. 10).

6.2. Tectonic evolution model for the transition from subduction to
collision

Combining the results of Lx3 with previous seismic and other
geophysical surveys, a tectonic evolution model of the transition from
subduction to arc-continental collision in the northeast SCS is proposed
(Fig. 11). The evolution model can be divided into four regimes ac-
cording to the differences in the properties of subducting plates.

In the first regime, which probably occurs south of 20.2°N, the
oceanic crust is subducted under the Luzon arc of the Philippine Sea
Plate. Because there is less sediment, thanks to being far from the con-
tinental margin of South China, the oceanic crust is thin, and the base-
ment is relatively flat, forming a small accretionary wedge without
observable velocity anomaly and developing a forearc basin (North
Luzon Trough) (Fig. 11a).

In the second regime, between 20.2°N and 21.5°N, the thinned
continental crust is initially subducted, accompanied by the accre-
tionary wedge gradually widening and the forearc basin narrowing
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progressively. At this regime, due to the subduction of the thinned
continental crust, the fault blocks of the upper crust were partially
scraped off and accreted to the bottom of the accretionary wedge,
causing the accretionary wedge to thicken and the formation of a low-
velocity anomaly due to the hydration effect of plate dehydration
(Fig. 11b).

In the third regime, the initial collision occurs at 21.5°N ~ 22.7°N.
The continental crust begins to subduct. Meanwhile, the North Luzon
Trough completely closes, and the accretionary wedge is heavily uplif-
ted, widened, and finally emerges above the water level. The low-
velocity anomaly underplating at the bottom of the accretionary
wedge formed in the second regime suffers subsequent compression and
compaction and then turns into a high-velocity anomaly (Fig. 11c).

In the final regime, mature collision happens to the north of 22.7°N,
the passive continental margin of the Eurasian plate continued to collide
with the Luzon Arc, forming a typical active arc-continental collision
orogenic belt that is taking place at Taiwan at present (Fig. 11d). The
high-velocity anomaly at the base of the accretionary wedge formed in
the early regime may be exhumed to the surface (Byrne et al., 2024). To
the east, the Coastal Range is mainly composed of Miocence Luzon Arc
volcanic rocks, representing the northernmost extension of the Luzon
Arc. Further west, separated by the Longitudinal Valley, the units
exposed in the Central Range are defined by the slate belt (Hsuehshan
Range and Backbone Slates) and polymetamorphic rocks (Tananao
Complex) (Molli and Malavieille, 2010). In the foreland, the Western
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Foothills correspond to a fold-and-thrust belt affecting the Miocene-
Pliocene shallow neritics of the Chinese margin and the Pliocene-
Holocene deposits of the foreland basin (Xu et al., 2022).

7. Conclusion

The crustal structure obtained from seismic refraction/wide-angle
reflection and MCS data on line Lx3 in the northeast SCS, combined
with the results obtained by previous studies, provides new insight into
the subduction of different natures of the crust in response to subduction
to collision processes. The main conclusions are as follows:

1) The nature of the northeastern margin of the SCS is a 12-15 km thick
thinned continental crust with a 2-4 km thick HVL of the lower crust
formed by magmatic underplating.
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2) At the bottom of the accretionary wedge, a low-velocity anomaly is
observed with a velocity of 4.8-5.5 km/s, likely formed by the sub-
ducted upper crust being partly scraped off and accreted in the
wedge, thanks to subsequent hydration, resulting in a low-velocity
nature.

3) A tectonic evolution model of the transition from oceanic subduction
to arc-continental collision is proposed. In this model, the velocity
anomaly at the bottom of the accretionary wedge undergoes a pro-
cess from ordinary to low-velocity anomaly and then to high-velocity
anomaly due to the transition from hydration to compaction.
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