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Key Points:
●  No basalt accumulation is evident atop the 660-km discontinuity beneath the Sea of Okhotsk.
●  Temperature and water content influence the regional topography of the 660-km discontinuity.
●  The basalt accumulation at the base of the MTZ is sporadic, not ubiquitous.
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Abstract:  Recent seismic evidence shows that basalt accumulation is widespread in the mantle transition zone (MTZ), yet its ubiquity or
sporadic nature remains uncertain. To investigate this phenomenon further, we characterized the velocity structure across the 660-km
discontinuity that separates the upper mantle from the lower mantle beneath the Sea of Okhotsk by modeling the waveform of the
S660P phase, a downgoing S wave converting into a P wave at the 660-km interface. These waves were excited by two regional >410-km-
deep events and were recorded by stations in central Asia. Our findings showed no need to introduce velocity anomalies at the base of
the MTZ to explain the S660P waveforms because the IASP91 model adequately reproduced the waveforms. This finding indicates that
the basalt accumulation has not affected the bottom of the MTZ in the study area. Instead, this discontinuity is primarily controlled by
temperature or water content variations, or both. Thus, we argue that the basalt accumulation at the base of the MTZ is sporadic, not
ubiquitous, reflecting its heterogeneous distribution.
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1.  Introduction
Two  prominent  discontinuities  exist  in  the  Earth’s  interior  at

depths of approximately 410 km and 660 km, representing transi-

tion  boundaries  of  phase  change  primarily  associated  with  the

mineral  olivine,  a  predominant  constituent  in  the  upper  mantle

(e.g., Helffrich  and  Wood,  2001).  The  mantle  region  between  the

two boundaries is the mantle transition zone (MTZ), a critical link

connecting  the  upper  and  lower  mantle  (e.g., Bina,  1991).  The

structure  of  the  MTZ  is  of  great  importance  in  gaining  insights

into  the  composition  of  the  Earth’s  interior  and  the  dynamics  of

the  downgoing  slab  and  upwelling  plume  (e.g., Morgan  and

Shearer, 1993; Shearer, 1995; Hu JS et al., 2018; Papanagnou et al.,

2023).

It has long been recognized that temperature (e.g., Shearer, 1995)

and  water  content  (e.g., Litasov  et  al.,  2005)  primarily  influence

the depth of  the mantle discontinuities  in the MTZ.  For  instance,

the arrival of slabs and plumes significantly changes the thickness

of the MTZ (e.g., Foulger, 2012). The water content also affects the

sharpness  of  upper  mantle  discontinuities  (Wood,  1995; Smyth

and  Frost,  2002).  In  contrast,  the  velocity  and  density  structures

are mainly controlled by the composition of the MTZ (Wang JC et

al.,  2023).  For  instance,  the  accumulation  of  basalts  at  the  MTZ

significantly  affects  the  composition,  and  thereby  the  velocity

structure, of the MTZ (e.g., Kono et al., 2012; Goes et al., 2022).

The  seismological  evidence  has  increasingly  suggested  that  the

MTZ  is  rich  in  basalts,  which  result  from  the  segregation  of

subducted oceanic  slabs  (Shen Y and Blum,  2003; Shen XZ et  al.,

2014; Taylor  et  al.,  2019; Feng  JK  et  al.,  2021; Bissig  et  al.,  2022;

Tauzin  et  al.,  2022; Yu  CQ  et  al.,  2023).  However,  whether  the

basalt  accumulation  at  the  base  of  the  MTZ  is  ubiquitous  or

sporadic remains uncertain. Therefore, this study aimed to examine

the ubiquity of the basalt accumulation by constraining the veloc-

ity  structure  across  the  660-km  discontinuity  beneath  the  Sea  of

Okhotsk.  We  found  no  evidence  of  basalt  accumulation  at  the

base  of  the  MTZ  in  this  locality.  Our  finding  sheds  light  on  the

nature of the composition and temperature in the study area and

argues  for  sporadic,  rather  than  ubiquitous,  basalt  accumulation

at the base of the MTZ. 

2.  Data and Analysis 

2.1  Data and Processing
In  this  study,  waveform  data  of  two  deep-focus  earthquakes

(Table 1) were collected in the Kuril subduction zone recorded by

central  Asian  stations  (Tables  2 and 3). The  distribution  of  earth-
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quakes and stations is  presented in Figure 1.  We used the S-to-P

conversion wave (SdP),  a  downgoing S  wave converting into a  P

wave  at  a  seismic  discontinuity  (Figure  1c),  such  as  the  660-km

discontinuity below the focus of earthquakes,  to characterize the

velocity  structure  across  the  discontinuity  (e.g., Niu  FL  and

Kawakatsu, 1995; Zang SX et al., 2006; Li J et al., 2008, 2023; Zhou

YZ et al.,  2012; Li J and Yuen, 2014; Yang ZT and He XB, 2015; He

XB and Zheng YX, 2018; Yuan Y et al., 2021; He XB, 2022; Cui QH et

al., 2018, 2023). The advantage of this approach is that it minimizes

the  effects  introduced  by  mantle  heterogeneities  by  considering

the differential travel times of the SdP versus the P wave because

they  share  similar  ray  paths  defined  by  the  source  and  receiver

(e.g., Wang LM and He XB, 2020). The similarity in ray paths leads

to a nearly identical (slightly lower) slowness of the SdP compared

with the direct P wave. Vespagram calculations can determine the

relative slowness via an Nth (N = 4) root slant stack algorithm (e.g.,

Zang SX et al., 2006; Hu JF and He XB, 2019).

Before  determining  the  S-to-P  conversion  depth,  we  used  the

differential travel times to reconstrain the focal depths (Figure 2),

which reduced the uncertainties on the conversion depths intro-

duced  by  the  errors  of  the  focal  depths.  We  then  applied  a  two-

pass,  two-pole  Butterworth  bandpass  filter  with  0.05  and  0.5  Hz

corner frequencies to the vertical component data (e.g., Wang LM

and He XB, 2020). Note that the instrumental responses were also

removed  to  yield  the  velocity  seismograms.  The  record  sections

comprising the P and SdP waves were aligned along the direct P

wave and plotted as a function of the epicentral distance (Figures

3a and 3c). The data show the notably prominent arrivals at ~25 s

after the direct P wave,  identified as the S-to-P conversion at the

660-km  discontinuity  and  named  S660P.  The  arrivals,  clearly

shown  on  the  vespagrams  (Figures  3b and 3d),  were  also

predicted  by  the  IASP91  model  (Kennett  and  Engdahl,  1991),  in

which the S660P was slightly slower than that of the direct P wave

by 0.05 s/deg.  High-quality seismograms offer a rare opportunity

to conduct waveform modeling because the arrival time informa-

tion of S660P has often been extracted by energy stacking to esti-

mate the depth of the 660-km discontinuity (e.g., Li J et al.,  2008;

Cui  QH  et  al.,  2023; Hao  G,  2023).  Still,  the  use  of  waveforms  is

often minimal because of contamination by noises. 

2.2  Validation of S660P Waves
To further identify the second arrival after P as the S-to-P conver-

sion wave, the record sections were rotated to the LQT coordinate

system  (Figure  4).  The L component  showed  a  large  amplitude,

and the Q and T components showed weak signals. This behavior

helped  validate  that  the  arrivals  after  P  were  S-to-P  conversion

waves.

Before conducting a series of modelings, we compared the simu-

lated waveforms based on the IASP91 model by using two different

algorithms,  normal-mode  summation  versus  propagation  matrix

 

Table 1.   Information on the two earthquakes used in this study, taken from the U.S. Geological Survey catalog, in which the focal depths have
been reconstrained by considering differential travel times between P and pP (Figure 2).

Date of earthquake Latitude (°N) Longitude (°E) Focal depth (km)

July 23, 2016 47.58 146.94 419

November 2, 2018 47.83 146.70 440

 

Table 2.   Information on the stations selected for the 2016 earthquake and the SdP conversion points at the 660-km discontinuity.

Network code Station code Latitude (°N) Longitude (°E) Conversion point latitude (°N) Conversion point longitude (°E)

KR MNAS 42.49 72.51 48.19 145.42

KZ BRVK 53.06 70.28 48.40 145.52

KZ KKAR 43.10 70.51 48.21 145.45

KZ KUR01 50.72 78.56 48.33 145.39

KZ KUR03 50.68 78.55 48.33 145.39

KZ KUR05 50.64 78.54 48.33 145.39

KZ KUR20 50.64 78.37 48.33 145.39

KZ KURK 50.72 78.37 48.33 145.39

KZ MKAR 50.64 78.37 48.23 145.31

 

Table 3.   Information on the stations selected for the 2018 earthquake and the SdP conversion points at the 660-km discontinuity.

Network code Station code Latitude (°N) Longitude (°E) Conversion point latitude (°N) Conversion point longitude (°E)

KN CHM 42.99 74.75 48.06 145.56

KN ULHL 42.25 76.24 48.04 145.53

KN USP 43.27 74.50 48.07 145.56

KR BOOM 42.49 75.94 48.04 145.54

KZ PDGK 43.33 79.48 48.04 145.49
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(Wang RJ, 1999). The calculated seismograms showed remarkable
similarity (Figure 5), reflecting the excellent reliability of the simu-
lations.  Note  that  we  used  only  the  propagation  matrix-based
algorithm software Qseis (Wang RJ, 1999) to conduct the following
simulations. To examine the nature of the S660P wave further, we
filtered the downgoing SV waves for the simulations according to
the IASP91 model (Kennett and Engdahl, 1991), and the synthetic
seismograms showed the vanishment  of  the S660P wave (Figure
6).  This  scenario  also  supports  the  observed  later  arrivals  after  P,
very likely as S-to-P converted waves at the 660-km discontinuity.
As such, different lines of evidence validated that the arrivals after
P were S660P waves (Figure 3). 

2.3  Model Construction and Waveform Modeling
The observed S660P waves exhibited high-quality waveforms that

could be readily  identified without  stacking processes  (Figure  3).
This  provided  an  opportunity  to  constrain  the  velocity  structure
across  the  660-km  discontinuity  below  the  focus  of  earthquakes
by  conducting  waveform  modeling.  We  used  the  trial-and-error
method to search for the best model to explain the data. In other
words,  we  conducted  waveform  modeling  based  on  a  suite  of
velocity models and compared each synthetic waveform with the
observed S660P waveform. We evaluated the waveform similarity
between the synthetic waveforms and the data by calculating the
cross-correlation coefficient (CC). More important, the S660P wave
was normalized relative to the S wave. This process minimized the
effects of the source radiation pattern because they shared similar
energy when excited from the source.

The  critical  process  of  the  trial-and-error  method  was  to  build
velocity  models  for  examination.  Before  modeling  the  S660P
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Figure 1.   (a) Map showing tectonic settings of the study region. The red lines denote the depth contours of the upper boundaries of slabs. The

two events are indicated by a white (the 2018 event) and yellow (the 2016 event) star, respectively. The red dot shows the S-to-P conversion point

at the 660-km depth. (b) A vertical cross-section showing the Vp perturbation along the A–A′ profile given by the TX2019 model (Lu G et al., 2019).

The black dashed lines denote the S-to-P ray paths at the source side calculated via the TauP Toolkit (Crotwell et al., 1999) based on the IASP91

model (Kennett and Engdahl, 1991). (c) A schematic plot depicting the ray paths for both P and S-to-P (SdP). (d) Map showing the great circle

paths, indicated by lines, connecting the two earthquakes and the stations, in which blue corresponds to the 2018 event and yellow corresponds

to the 2016 event.
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Figure 2.   Focal depths reconstrained by incorporating information on differential P and pP travel times for the two events used in this study.
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Figure 3.   The record sections used in this study (a, c) comprising velocity seismograms and the corresponding data’s fourth root vespagrams (b,

d). The direct P wave and later arriving S660P are marked.
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Figure 4.   The record sections for the two events in the LQT coordinate system. The left column shows the seismograms for the 2016 event,

whereas the right column is for the 2018 event.
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waveforms,  we  determined  the  S-to-P  conversion  depths  by

considering  the  differential  travel  times  between  P  and  S660P

(Figure 7). The newly determined depths (672 km and 669 km) for

the two S-to-P conversions were slightly deeper than 660 km. The

underlying causes for the depression of the phase change-related
discontinuity  are  explored  in  the  discussion  in  Section  3.  The
constrained conversion depths were further incorporated into the
structural models used for waveform simulations.

In  this  study,  we  considered  only  two  types  of  models.  The  first
was  the  standard  IASP91  model  (Kennett  and  Engdahl,  1991),
which  excellently  represented  the  velocity  structure  across  the
660-km  discontinuity  at  a  global  scale.  The  second  was  a  low-
velocity  layer  (LVL)  at  the  base  of  the  MTZ.  As  mentioned,  we
aimed to examine whether basalts accumulated at the base of the
MTZ in the study area because many studies have demonstrated
that segregated basalts display low-velocity signatures in the MTZ
(Kono et al., 2012; Feng JK et al., 2021; Wei W et al., 2021). For the
IASP91-based  model,  we  used  the  newly  determined  S-to-P
conversion  depth  to  replace  the  660-km  depth,  whereas  the
velocity and density were the same as those of the IASP91 model.
For the LVL model, a series of models were constructed by varying
the  thickness  of  the  LVL  from  0  to  15  km  in  increments  of  1  km,
whereas  the velocity  reduction of  the LVL in Vp varied from −1%
to −10%.  The Vp versus Vs ratios  and  density  were  the  same  as
those  of  the  IASP91  model.  According  to  the  built  models,  we
used  Qseis  software  to  conduct  the  waveform  simulations  and
compare the  synthetic  waveforms  with  the  data,  which  is  elabo-
rated  in  the  next  section.  The  global  centroid-moment  tensor
solution  was  used  for  the  source  mechanisms,  and  the  source
time functions were derived from stacked P waveforms. 

3.  Results and Discussion 

3.1  The Depths of S-to-P Conversions
The  newly  constrained  S-to-P  conversions  occurred  at  depths  of
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Figure 5.   Comparisons of synthetic waveforms in the vertical component calculated by two software programs (Qseis and Qssp). Qseis is based

on the propagation matrix algorithm, whereas Qssp is based on the normal-mode summation algorithm. The left column shows the seismograms

comprising S660P waveforms, and the right column shows the S wave and its coda.
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Figure 6.   Comparison between synthetic seismograms calculated for

the full wavefields (black lines) versus the filtered downgoing SV

waves (red lines). A remarkable difference in the arrival of S660P was

observed, in which seismograms for the filtered downgoing SV waves

showed no S660P waves.
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672  km  and  669  km,  slightly  deeper  than  660  km.  The  gentle
depression of depths by 12 km and 9 km could have been caused
by a low-temperature anomaly of ~210 K and ~160 K, respectively,
according  to  the  negative  Clapeyron  slope  (−2.8  MPa/K)  of  the
transition  of  ringwoodite  to  perovskite  and  magnesiowüstite
given  by Ito  and  Takahashi  (1989).  Note  that  water  also  causes
depression  at  a  depth  of  660  km,  as  laboratory  results  have
suggested  (Litasov  et  al.,  2005).  In  contrast,  it  has  long  been
acknowledged that the MTZ is an important water reservoir in the
Earth’s  deep  interior,  especially  underneath  subduction  zones
(e.g., Kuritani et al., 2011; Li J et al., 2013). As such, it leads to ambi-
guity regarding the relative contribution to the depression of the
660-km discontinuity from temperature and water. If water plays a
role,  the  temperature  anomaly  would  be  less  than  ~210  K  and
~160 K. This is probably true because the S-to-P waves abundantly
sample the ambient mantle or the margins of the subducting slab
rather than the interior of the slab,  as shown in the tomographic
image  (Figure  1b),  leading  to  the  gentle  temperature  anomaly
captured by the data.

We  compared  our  observations  with  a  global  model  (Wang  WZ

et al., 2021) characterizing the water and temperature anomaly of
the  lowermost  MTZ  underneath  subduction  zones,  which  was
based  on  seismic  tomography  and  topography  of  the  660-km
discontinuity  (Figure  8).  In  general,  our  results  were  consistent
with the model of Wang WZ et al. (2021), which explicitly showed
the role played by water and temperature in affecting the topog-
raphy of the 660-km discontinuity. More specifically, for the 2016
event, the S-to-P conversions occurred at a depth of 672 km, clus-
tering in an area with low temperature and water-rich anomalies.
In contrast, for the 2018 event, the S-to-P conversions occurred at
a  depth  of  669  km,  clustering  in  an  area  with  no  significant
temperature and water anomalies. 

3.2  The LVL Model
We  conducted  the  simulations  based  on  all  the  LVL  models  as
described  in  Section  2.3.  Our  results  showed  that  the  model
comparing  a  7-km-thick  LVL  with  a Vp reduction  of −7%  could
better  explain  the  data  than  could  other  LVL  models. Figure  9
presents a comparison between the synthetic waveforms and the
data.  As  mentioned,  to  minimize  the  effects  of  source  radiation
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Figure 7.   S-to-P conversion depths constrained by differential travel times between P and SdP.
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Figure 8.   Comparison between the depths of the S-to-P conversion constrained in this study and the model of water and temperature

anomalies of the lowermost MTZ given by Wang WZ et al. (2021). For the 2016 event, the S-to-P conversions occurred at a depth of 672 km,

clustering in an area with low temperature and water-rich anomalies. In contrast, for the 2018 event, the S-to-P conversions occurred at a depth

of 669 km, clustering in an area with no significant temperature and water anomalies.
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patterns, the seismograms were normalized with respect to the S

wave (positive  peak-to-zero  amplitude).  The  peak-to-peak ampli-

tude was  not  used because  the  negative  peak  of  the  synthetic  S

wave did not fit the data well, particularly for the 2016 event. The

cause  of  the  misfit  of  the  S  wave’s  negative  peak  is  explored  in

Section 3.3. The normalization process is important because it can

tell us how the source radiation pattern influenced the simulated

waveforms. In general, the synthetic S660P waveforms fit the data

adequately.  The  slowness  and  amplitude  of  the  S660P  could  be

largely replicated based on the LVL model. 

3.3  The IASP91-based Model
The  model  was  similar  to  the  IASP91,  except  that  the  660-km

depths  were  replaced  with  the  newly  determined  S-to-P conver-

sion depths. In general, the synthetic S660P waveforms also fit the

data well (Figure 10). Note that the negative peak of the synthetic

S wave did not fit the data either, particularly for the 2016 event.

As  such,  the  positive  peak-to-zero  amplitude  of  the  S  wave  was

used to normalize the seismograms.

To  explore  possible  causes  for  the  misfit  between  the  negative

peak  of  the  synthetic  S  wave  and  the  data,  we  compared  the

synthetic  S  waves  with  the  data  in  the T component  (Figure  11).

The  comparisons  showed  that  the  synthetic T-component  S

waves  adequately  reproduced  the  data.  Therefore,  we  suspect

that some S-to-P conversions and reverberations at shallow struc-

tures,  such  as  sediments  underneath  the  stations,  probably

contaminated  the  S  waveforms  in  the  vertical  component.  In

contrast,  the synthetic simulations did not consider such shallow

anomalous structures, leading to the misfit between the synthetic

waves and the data regarding the negative peaks of the S waves.

In any case, we have avoided the potential effects of the misfit by

considering the positive peak-to-zero amplitude of S waves as the
reference for normalizing seismograms because the positive peak
of S waves was not affected by those contamination waves. 

3.4  Comparisons Between the LVL and IASP91-based

Models
The synthetic waves based on the LVL and IASP91-based models
adequately  explained the data.  To quantify  the evaluation of  the
two  models,  we  calculated  the  waveform  CC  between  the
synthetics  and  the  data.  We  first  used  slant-stacking  to  the  SdP
waveforms  and  then  calculated  the  CC  between  the  stacked
synthetic  waves  and  the  stacked  data.  Stacking  was  important
because it minimized the noise effect on individual traces. Figures
12–13 (b–c) show the time windows for CC calculation.

The  calculated  CCs  showed  that,  for  both  events,  the  IASP91-
based model yielded a greater CC than did the LVL model (0.90 vs.
0.86 and 0.96 vs. 0.94; Figures 12–13). Therefore, the IASP91-based
model  explained  the  data  better  than  did  the  LVL  model.  Thus,
introducing  a  compositional  anomaly  layer  at  the  bottom  of  the
MTZ was not required here. In contrast, the 660-km discontinuity
was  influenced  by  the  temperature  or  water  anomaly  atop  it,  or
both, leading to a depressed discontinuity. 

3.5  Heterogeneous Distribution of Basalts in the MTZ
Our observations demonstrated that  the lowermost  MTZ did not
contain a basalt layer in the study area, which seemed to conflict
with  other  studies  showing  a  basalt-rich  layer  at  the  base  of  the
MTZ  (e.g., Bissig  et  al.,  2022)  underneath  subduction  zones.  We
proposed a conceptual model to reconcile our observations with
other  results  by  introducing  basalts  heterogeneously  distributed
in  the  MTZ  (Figure  14).  More  specifically,  basalts  likely  prefer  to
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segregate and accumulate in areas on the continent-ward side of

a subducting slab at the base of the MTZ. This conceptual model

is  compatible  with  the  model  of Bissig  et  al.  (2022),  who  used

waveform triplications to characterize the structure at the base of

the MTZ, sampling the areas between the earthquakes and conti-

nental  stations  (i.e.,  on  the  continent-ward  side  of  a  subducting

slab). In contrast, the areas at the trenchward side of a subducting

slab  at  the  base  of  the  MTZ  would  be  poor  in  basalts  or  free  of

basalts  because  these  areas  would  be  close  to  the  subducting

oceanic mantle lithosphere rather than the oceanic crust. Our S-to-

P waves here happened to sample such a basalt-poor area. In the

Izu-Bonin subduction zone, S-to-P waves were sampled in a similar

basalt-poor area at the base of the MTZ at the trenchward side of

a  subducting  slab  (Wang  LM  and  He  XB,  2020),  which  helped

strengthen our model accordingly. Meanwhile, our results favored

a sporadic, rather than ubiquitous, accumulation of basalts at the

base of the MTZ. In addition, after the segregation and accumula-

tion of basalts, a subsequent series of dynamic processes probably

gradually  led  to  compositional  homogenization  in  the  MTZ.

However, our observations preferred a heterogeneous, most likely

far from homogeneous, MTZ. This scenario aligns with the model

arguing for a poorly mixed MTZ proposed by Waszek et al. (2021). 

3.6  Possible Reservoirs of Basalts
The  prerequisite  for  basalts  to  segregate  and  accumulate  in  the

MTZ  is  separation  from  the  accompanying  mantle  lithosphere.

This process is likely possible because crustal and mantle compo-

nents of the subducted oceanic lithosphere have distinct densities

and viscosities (Karato, 1997). At the same time, a weak serpentinite

layer  within  the  subducted  oceanic  lithosphere  could  promote

decoupling between the oceanic crust and underlying lithosphere

(Lee and Chen WP, 2007).  Mechanical stirring in the deep mantle

(Stixrude  and  Lithgow-Bertellonic,  2012)  and  slab–MTZ interac-

tions (Karato, 1997) could help basalts detach from their underlying

lithosphere. An accumulation of basalts at the base of the MTZ is

also feasible, as supported by numerical experiments (Yan J et al.,

2020; Li MM, 2021). If the MTZ represents one of the basalt reser-

voirs,  other  important  reservoirs  could  be  the  mid-mantle  (e.g.,

Bentham  and  Rost,  2014; Waszek  et  al.,  2018; Kaneshima,  2019)
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Figure 10.   Comparisons between the synthetic waveforms comprising the S660P and the S waves, according to the IASP91-based model and

the data. The S wave coda is truncated.
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Figure 13.   The same as Figure 12, except for the 2018 event.
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and the bottom of  the mantle (e.g., Li  MM and McNamara,  2022;
Su YL et al., 2024). 

4.  Conclusions
In this study, we constrained the velocity structure across the 660-
km  discontinuity  beneath  the  Sea  of  Okhotsk  by  modeling  the
S660P  waveforms.  We  found  that  the  IASP91  model  could
adequately  replicate  the  S660P  waveforms.  At  the  same  time,
their  arrival  times  could  be  explained  by  temperature  or  water
content anomalies, or both, at the base of the MTZ introduced by
the arrival of subducted slabs. Our findings suggest that although
slabs  have  disturbed  the  MTZ  of  this  area,  basalt  accumulation
and  segregation  have  not  occurred.  Therefore,  we  argue  for  a
sporadic,  rather  than  ubiquitous,  accumulation  and  segregation
of basalts at the base of the MTZ. 
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