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ABSTRACT

The distribution of Oligo-Miocene mag-
matic rocks from southern Tibet in space
and time yields critical information on the
geometry and deformation of the subducted
Indian lithosphere which impacts on plateau
growth following the India and Eurasia col-
lision. A growing body of geophysical evi-
dence has shown that the subducted Indian
lithosphere beneath the Tibetan Plateau has
been torn apart. However, the spatiotemporal
distribution and cause of the tearing remain
enigmatic. Timing of the post-collisional mag-
matic rocks in southern Tibet exhibits four
patterns of decreasing ages; magmatism be-
gan earlier in the west and east Himalayan
syntaxis and evolved to two age undulations
in the central southern Tibet. Seismic images
show that regions of slab window (both 90°E
and 84°E) and flattened subducted litho-
sphere (both 86°E and 81°E) are present at
depth of 135 km. Correspondingly, increas-
ing mineral crystallization temperatures (ab-
solute value of 50 °C) were recorded in the
Oligo—Miocene ultrapotassic-potassic rocks
at 90°E and 84°E, while opposing trends were
shown by coeval ultrapotassic-potassic rocks
at 86°E and 81°E. Besides, the melting depth
of the Oligo—Miocene ultrapotassic-potassic
primitive melts decreases from nearly 100 km
to 70km between 81°E and 90°E, prob-
ably indicating progressive rising of the litho-
sphere-asthenosphere boundary. Such varia-
tions were possibly the results of the focused
flow and upwelling of asthenosphere, which
advanced rapidly but diachronously through
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weakened and torn sectors within the overly-
ing Indian slab. The upwellings probably in-
duced diachronously upward bending of the
residual Indian slab and its flattening, which
accelerated the tearing of the Indian litho-
sphere during continental subduction.

INTRODUCTION

Widespread discovery of ultrahigh pressure
rocks worldwide indicates that continental crust
with positive buoyancy can be subducted to mantle
depths (Gilotti, 2013; Lanari et al., 2013; Ye et al.,
2000). Cenozoic continental subduction along the
Alpine belt and the Himalayan belt is observed
seismically (Gao et al., 2016; Kosarev et al., 1999;
Shi et al., 2020; Zhao et al., 2015). However, the
interplay between the downgoing continental slab
and upwelling asthenosphere from below the slab
is still enigmatic. Cenozoic collision between the
Indian and Eurasian continents led to thickening
and uplift of the Tibetan crust since ca. 55 Ma
(Chung et al., 2005; Coulon et al., 1986; Mol-
nar et al., 1993; Zhu et al., 2019), which offers a
classic example of geodynamic processes during
continental subduction, and a testing ground for
deeper understanding of collisional processes.

Mantle seismic tomography on the geometry of
the underthrusting Indian lithosphere is critical in
deciphering the intrinsic relations between the con-
tinental collision and the rising plateau. The front
of the subducted Indian lithosphere (SIL) has been
suggested to extend as far as the Bangong-Nujiang
suture in central Tibet (Kosarev et al., 1999; Til-
mann et al., 2003). The downgoing Indian litho-
sphere was recently proposed to be fragmented by
tearing at varying dip angles (Chen et al., 2015;
Li and Song, 2018; Liang et al., 2016; Liu et al.,
2020). Other studies suggest that a large portion
of the Indian crust may either return to the surface
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via crustal-scale duplexing (Gao et al., 2016) and/
or sink into the deep mantle (Shi et al., 2020) rather
than underplate the base of the Asian lithosphere.
Overall, geodynamic processes and their contribu-
tions to the Cenozoic deformation of the Tibetan
Plateau remain the subject of much debate.
Fragmentation of the downgoing Indian litho-
sphere would permit or induce asthenospheric
upwelling (Liang et al., 2016, Wang et al., 2022),
resulting in partial melting of the overriding
lithosphere. Asthenospheric materials filling
the newly formed gap might cause decreasing
melting depth and increasing magma tempera-
ture. Thus, the post-collisional (ca. 30-10 Ma)
magmatism in southern Tibet provides potential
proxies for recording the tearing processes of
the Indian lithosphere as well as deciphering the
driving force(s) for Cenozoic tectonism in the
Tibetan Plateau. In this paper, we carry out an
integrated study comprising zircon U-Pb dat-
ing and mineral chemistry from 8 ultrapotassic-
potassic rocks in the central part of the Lhasa
terrane and 14 felsic dykes in both the west
Himalayan syntaxis (WHS) and the east Hima-
layan syntaxis (EHS) (Supplemental Data S1';

ISupplemental Material. Supplemental Data S1:
Major and trace elements and age data summary of
the studied Oligocene-Miocene magmatic rocks.
Supplemental Data S2: Zircon trace elements of the
studied Oligocene-Miocene magmatic rocks. Table
S1: Zircon U-Pb ages of the studied Oligocene—
Miocene magmatic rocks. Table S2: Clinopyroxene
major elements of the studied Miocene ultrapotassic-
potassic volcanic rocks. Table S3: Published ages
of the Oligocene to Miocene magmatic rocks in
southern Tibet. Table S4: Calculated primary magmas
and pressure estimates of the ultrapotassic rocks in
southern Tibet. Please visit https://doi.org/10.1130
/GSAB.S.22088414 to access the supplemental
material, and contact editing@geosociety.org with
any questions.
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Fig. 1). Together with the published age results
(212 dated samples) of the post-collisional mag-
matic rocks in southern Tibet, our aims are: (1)
to establish a detailed age spectrum from WHS
and EHS toward the central region of the Lhasa
terrane as well as to determine magma crystal-
lization temperature variations in southern Tibet,
and (2) to discuss the possible geodynamic cou-
pling between tearing of the Indian lithosphere
and upwelling deeper asthenosphere during con-
tinental collision.

GEOLOGICAL SETTING AND
SAMPLES

The “Trans-Himalayan Batholith,” which
crops out north of the Indus-Yarlung Suture in
southern Tibet, is dominantly composed of the
Mesozoic-Cenozoic plutonic complex in the
Kohistan and Ladakh island arc west of 80°E
and the Lhasa terrane east of 80°E (Searle
et al., 1987). The Late Cretaceous to Eocene
(12040 Ma) continental arc magmatic rocks in
the Trans-Himalayan Batholith directly recorded
subduction of the Neo-Tethyan Ocean slab
before 55 Ma and then initiation of the follow-
ing India-Asia collision (e.g., Chung et al., 2005;
Zhu et al., 2019). Both the WHS and EHS mark
the western and eastern extremities of the Hima-

layan orogen in southern Tibet, and are mapped
as northward loops of the Indus-Yarlung Suture,
indicating giant “pop-up” structures with Indian
Precambrian basement core and the Trans-Hima-
layan Batholith margin (Figs. 1A, 2A, and 2B).

The post-collisional magmatic rocks in south-
ern Tibet comprise ultrapotassic-potassic volca-
nics, mainly in the central and western parts of
the Lhasa terrane (Fig. 1A), and calc-alkaline
intrusions that are widespread but of small vol-
ume in the Trans-Himalayan Batholith. The
distribution of these magmatic rocks is some-
times controlled by the N-S—trending normal
fault systems in southern Tibet (Figs. 1A, 2C,
and 2D). The ultrapotassic and low-silica potas-
sic volcanics are commonly considered to be
derived from the metasomatized lithospheric
mantle beneath Tibet (Guo et al., 2015; Guo and
Wilson, 2019; Hao et al., 2022; Mahéo et al.,
2002; Miller et al., 1999; Nomade et al., 2004;
Sun et al., 2018; Turner et al., 1996; Williams
et al., 2004; Zhao et al., 2009), while the calc-
alkaline intrusions have been suggested to be
dominantly derived from the lower crust of the
southern Lhasa terrane (Chung et al., 2003; Hao
et al., 2021; Hou et al., 2004; Pan et a., 2012;
Sun et al., 2018).

Detailed individual sample descriptions are
shown in Supplemental Data S1. The potassic-
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rocks. Detailed data sources are
present in Table S3.

ultrapotassic rocks in this study contain pho-
notephlite-trachyandesite and phonotephlite-
trachyandesitic dykes with porphyritic textures
(Figs. 3A-3K). Phenocrysts (20%—45%) for the
phonotephlite-trachyandesite include clinopy-
roxene, phlogopite, olivine, and sanidine and the
groundmass includes clinopyroxene, phlogopite,
olivine, sanidine, apatite, Fe-Ti oxides, zircon,
and glass. The phonotephlite-trachyandesitic
dykes intruding the Pagu pluton mainly contain
clinopyroxene (10%-20%), phlogopite (5%-—
10%), hornblende (20%—25%), sanidine (35%—
45%), orthopyroxene (<3%), and olivine (<3%),
with accessory minerals of zircon, apatite, and
Fe-Ti oxides. Based on the variable clinopyrox-
ene (Cpx) textures, they can be divided into two
types: (1) type I Cpx commonly form crystal
aggregations and show pervasive resorption tex-
tures (Figs. 3A, 3B, 3E, and 3G); (2) type II Cpx
are commonly euhedral crystals and show zoning
textures sometimes (Figs. 3C, 3F, and 3H-3K).
The calc-alkaline intrusions collected from the
WHS and EHS are fine-grained (0.5-2 mm) two-
mica granites (Figs. 3L-3N). They are mainly
composed of quartz (25%-35%), plagioclase
(25%—-40%), K-feldspar (15%-35%), biotite
(19%—15%), and muscovite (1%—8%), with acces-
sory minerals of zircon, titanite, epidote, garnet,
apatite, and Ti-Fe oxides.
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Figure 2. (A) Tectonic map of the Western Himalayas Syntaxes shows sample locations of two-mica granite (see Fig. 1A for locations).
MMT—Main Mantle Thrust; KB—Kohistan Batholith; NP—Nanga Parbat, modified after 1:650,000 regional geological map. (B) Tectonic
map of Eastern Himalayan Syntaxes shows Indus/Yarlung Tsangpo Suture zone (IYS) and Namche Barwa, modified after Pan et al. (2012).
(C) Simplified tectonic map shows distribution of post-collisional ultrapotassic-potassic volcanic rocks in the N-S—trending TangraYumco-
Xuruco rift, modified from Guo et al. (2013). (D) Simplified tectonic map of the Yangying post-collisional potassic volcanic rocks, modified
from Zhang et al. (2017b).
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Figure 3. (A-K) Microphotographs of the Miocene ultrapotassic-potassic volcanics from the central Lhasa terrane of southern Tibet. (L-N)
Microphotographs of the Oligocene two-mica granite from the Kohistan Island arc of southern Tibet. Bi—biotite; Hb—hornblende; Cpx—
clinopyroxene; Opx—orthopyroxene; Pl—plagioclase; Qtz—quartz; Kfs—K-feldspar; San—sanidine; Ms—muscovite; Tit—titanite;

Ep—epidote; Grt—garnet.
ANALYTICAL METHODS

Whole-rock samples were analyzed for
major elements, using a Shimadzu sequential
X-ray fluorescence spectrometer (XRF-1800)
at the State Key Laboratory of Geological Pro-
cesses and Mineral Resources (GPMR), China
University of Geosciences, Wuhan, China.
Loss on ignition (LOI) was determined by
weight loss after drying at 1000 °C. The results
obtained from Chinese national standards and
repeated samples show analytical uncertain-
ties of the XRF data of ~1% for element con-
tents >10 wt% and ~5% for element contents
<1.0 wt%. More details about the analytical

procedures were described in Ma et al. (2012).
The analytical uncertainty is generally <5%.
Trace elements, including rare earth element
(REE), were measured using Agilent 7500a
inductively coupled plasma—mass spectrom-
etry (ICP-MS) at GPMR. Zhang et al. (2017a)
showed detailed sample-digesting procedure
for ICP-MS analysis and analytical precision
and accuracy.

Major element compositions of minerals
were determined at GPMR, with a JEOL JXA-
8230 electron probe microanalyzer (EPMA)
equipped with five wavelength-dispersive
spectrometers. The samples were first coated
with a thin conductive carbon film prior to
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analysis. During the analysis, an accelerating
voltage of 15 kV, a beam current of 10 nA, and
a 2-5 pm spot size were used to analyze miner-
als. Data were corrected online using a ZAF
(atomic number, absorption, fluorescence) cor-
rection procedure. The peak counting time was
10 s for Na, Mg, Al, Si, K, Ca, Fe, P, Cr and
20 s for Mn, Ti. The background counting time
was one-half of the peak counting time on the
high- and low-energy background positions.
The following standards were used: jadeite
(Na), olivine (Si), pyrope garnet (Al), diopside
(Ca, Mg), sanidine (K), rutile (Ti), almandine
garnet (Fe), rhodonite (Mn), apatite (P), chro-
mium oxide (Cr).
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U-Pb zircon dating was conducted by laser
ablation ICP-MS at GPMR. Zircon 91500 was
used as the external standard for U-Pb dating,
and was repeatedly analyzed every five analy-
ses. Time-dependent drifts of U-Th-Pb isotopic
ratios were corrected using a linear interpola-
tion (with time) for every five analyses accord-
ing to the variations of zircon 91500 (i.e., two
zircon 91500 + five samples + two zircon
91500) (Liu et al., 2010). Preferred U-Th-Pb
isotopic ratios used for zircon 91500 are from
Wiedenbeck et al. (Wiedenbeck et al., 1995).
The uncertainties of preferred values for the
external standard zircon 91500 were propagated
to the combined errors of the samples. Concor-
dia diagrams and weighted mean calculations

10000

were made using Isoplot/Ex_ver3 (Ludwig,
2003). Trace elements of the external standard
zircon 91500 are present in Supplemental Data
S2, and their mean values are roughly compa-
rable with the published data (Liu et al., 2010).

RESULTS
Major and Trace Elements

The calc-alkaline intrusions from the WHS and
EHS are weakly peraluminous (A/CNK = 1.00—
1.08) and contain high SiO, (71.72-75.16 wt%)
and Al,O; (14.03-15.28 wt%) and variable K,0O
(1.95-7.72 wt%) with K,0/Na,O of 0.4-2.9.
They are relatively enriched in Rb, Ba, Th, and

U and show strongly variable total REE contents
(5.2-110.6 ppm) and fractionated REE patterns
[(La/Yb)y = 3-65].

The ultrapotassic-potassic rocks have a wide
range of SiO, contents (48.4-63.2 wt%), and
high MgO (>3 wt%, except sample YBJ15) and
K,O (5.0-8.6 wt%) contents with high K,O/
Na,O ratios of 1.4-4.4 (Fig. 4). They contain
low TiO, (0.75-1.47 wt%) and CaO (3.19-
7.86 wt%) contents and high Cr (423-48 ppm)
and Ni (284-24 ppm) contents. They showed
comparable enrichment of Rb, Ba, Th, and light-
REE values and negative high field strength ele-
ment (e.g., Nb, Ta, P, and Ti) anomalies in the
trace element spider diagram (Fig. 5A). In the
chondrite-normalized REE pattern, these mafic
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Figure 5. (A) Primitive mantle-normalized element spider diagrams and (B) Chondrite-normalized rare earth element patterns for the ul-
trapotassic-potassic volcanics from the central Lhasa terrane of southern Tibet. Normalizing values are from Sun and McDonough (1989).
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intrusions displayed fractionated REE patterns
with (La/Yb)y ratios of 44—73 and no obvious Eu
anomalies (Euw/Eu* = 0.63-0.93) (Supplemental
Data S1; Fig. 5B).

U-Pb Zircon Geochronology

Zircons from the studied two-mica granites
in the WHS and EHS are commonly euhedral,
with variable crystal lengths of 50-400 pm and
aspect ratios of 1:1-6:1 (Fig. 6). In CL images,
they commonly show dark color and clear oscil-
latory zoning or patchy zoning (Fig. 6). A few
zircons showing light color could be inherited or
captured zircons (Figs. 6C and 6E). Zircons from
the potassic-ultrapotassic rocks are euhedral to
subhedral, with crystal lengths of 50-100 pm and
aspect ratios of 1:1-3:1. Two types of zircons are
recognized based on CL imaging (Figs. 6J-6Q).
Zircons in samples YLS03, PG09, and YBJ15
show clear broad oscillatory zoning and sector
zoning, while zircons in the other four samples
show clear oscillatory zoning. The U-Pb zircon
age data are given in Table S1.

Twelve analyses from sample HH-29 yield
206ph/238U ages between 32.0 & 0.5 Ma and
343 + 0.7 Ma, with a weighted mean of
32.7 £ 0.5 Ma (mean square weighted devia-
tion [MSWD] = 3.0) (Fig. 7A). Thirteen analy-
ses from sample HH-30 yield 2°Pb/>38U ages
between 21.8 0.3 Ma and 22.9 £ 0.2 Ma,
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with a weighted mean of 22.4 £+ (0.2 Ma
(MSWD = 2.3) (Fig. 7B). Eleven analyses
from sample HH-31 give 2%°Pb/?®U ages rang-
ing from 29.5+ 0.6 Ma to 32.7 £ 0.8 Ma,
with a weighted mean of 31.6 £ 0.5 Ma
(MSWD =4.0) (Fig. 7C). Fifteen analyses
from sample HH-33 yield 29Pb/>38U ages
between 30.1 £ 0.3 Ma and 32.1 &+ 0.6 Ma,
with a weighted mean of 31.0 £ 0.4 Ma
(MSWD = 3.6) (Fig. 7D). For sample HH-35,
seven U-Pb isotopic analyses on zircon crystals
give 206Pb/?38U ages varying from 21.4 4+ 0.3 Ma
to 22.0 + 0.3 Ma, with a weighted mean of
21.5+£0.2Ma (MSWD =0.7) (Fig. 7E).
Fourteen analyses from sample HH-36 yield
206Pp/238U ages between 29.9 + 0.6 Ma and
33.5+ 0.7 Ma, with a weighted mean of
32.0+ 0.6 Ma (MSWD =4.8) (Fig. 7F).
Twelve analyses from sample HH-37 yield
206Pp/238U ages ranging from 27.4 + 0.2 Ma
to 29.3 + 0.3 Ma, with a weighted mean of
28.2 + 0.4 Ma (MSWD = 4.4) (Fig. 7G).
Twelve analyses from sample T974 yield
206ph/238U ages ranging from 29.0 & 0.5 Ma
to 30.5 + 0.8 Ma, with a weighted mean of
29.7 + 0.4 Ma (MSWD = 4.4) (Fig. 7TH).
Twelve analyses from sample YLSO03 yield
206pp/238U ages between 12.7 &+ 0.5 Ma and
14.3 + 0.6 Ma, with a weighted mean of
13.8 £ 0.2 Ma MSWD = 0.9) (Fig. 7). Eleven
analyses from sample 19CZ08 yield 2°°Pb/>33U

ages between 10.9 & 0.2 Maand 11.8 £ 0.3 Ma,
with a weighted mean of 11.2 4+ 0.2 Ma
(MSWD = 1.1) (Fig. 7K). Twelve analyses from
sample 19CZ37 give 20°Pb/?38U ages ranging
from 10.9 £+ 0.63 Ma to 11.7 £ 0.3 Ma, with a
weighted mean of 11.3 + 0.1 Ma(MSWD = 1.1)
(Fig. 7L). Eleven analyses from sample 19CZ53
yield 20Pb/?38U ages between 11.0 + 0.2 Ma
and 12.1 4+ 0.3 Ma, with a weighted mean of
114+ 0.1 Ma (MSWD = 1.0) (Fig. 7M).
For sample YBJI1S, twelve U-Pb isotopic
analyses on zircon crystals give 2°°Pb/?38U age
intercepted at 10.2 £ 0.6 Ma (MSWD = 2.1)
(Fig. 7N). Twelve analyses from sample PG02
yield 20Pb/?38U ages between 14.0 + 0.4 Ma
and 15.8 &+ 0.4 Ma, with a weighted mean of
15.0 + 0.4 Ma MSWD = 2.6) (Fig. 70). Twelve
analyses from sample PG04 yield 2°°Pb/>38U ages
ranging from 14.1 = 0.4 Ma to 15.4 + 0.4 Ma,
with a weighted mean of 14.6 + 0.3 Ma
(MSWD = 1.8) (Fig. 7P). Ten analyses from
sample PG09 yield 2%Pb/?*8U age intercepted at
10.7 £ 0.4 Ma (MSWD = 3.0) (Fig. 7Q).

Mineral Composition

Clinopyroxenes in the ultrapotassic-potassic
rocks from both Chazi (86°E) and Pagu-Yangy-
ing (90°E) are composed of diopside and augite.
They have high MgO and FeO contents with
Mg# of 92-63 (Table S2; Fig. 8). The augite

)
G a0

Figure 6. Representative cathodoluminescence images for zircons from the granitoid samples (A) HH29, (B) HH30, (C) HH31, (D) HH33,
(E) HH35, (F) HH36, (G) HH37, and (H) T974 from the west Himalayan syntaxis and the east Himalayan syntaxis of southern Tibets, and
the ultrapotassic-potassic samples (J) YLS03, (K) 19CZ08, (L) 19CZ37, (M) 19CZ53, (N) YBJ15, (O) PG02, (P) PG04, and (Q) PG09.
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Figure 7. U-Pb Tera-Wasserburg plots for U-Pb zircon analyses from the granitoid samples (A) HH29, (B) HH30, (C) HH31, (D) HH33, (E)
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grains have higher Al,O; and TiO, contents, and
similar Na,O, compared to those of the diopside
grains for both the Chazi (86°E) and Pagu-Yan-
gying (90°E) ultrapotassic-potassic rocks. A few
augite grains from sample PG04 contain slightly
higher Cr,O; contents than other clinopyroxene
grains. The variable Mg# values of clinopyroxene
in these samples indicate that they have experi-
enced magmatic evolution with varying degrees.

The temperature and pressure conditions of
these evolved magmas are estimated from multi-
ple geobarometers and thermometers (Ferry and
‘Watson, 2007; Neave and Putirka, 2017; Putirka,
2008), which are listed in Table S2 and Supple-
mental Data S2. The estimated Cpx temperature
data are tested for equilibrium conditions using
three criteria: (1) the estimated Fe-Mg exchange
coefficient is 0.27 £ 0.03 (Table S2); (2) the

predicted and observed Cpx components are
roughly comparable (Table S2); (3) estimated
results from multiple Cpx thermometers are
also comparable (Fig. 8). Tpy0g.33. Tp2oos.34. and
Tpaoog.324 thermometers show that most of the
clinopyroxene grains formed under temperatures
ranging from 1150 to 900 °C (Table S2; Fig. 8).

The substitution of Ti in zircon is primarily for
Si (Ferry and Watson, 2007). Thus, the Ti-in-zir-
con thermometer depends on the activity of SiO,
(asiop) and TiO, (arin,). According to their SiO,
and TiO, contents, ag;, and ar, are 1 and 0.7
for the granitoids from the WHS and EHS and
0.7 and 0.9 for the ultrapotassic-potassic rocks
(except sample YBJ15), respectively. ag;p, and
ariop are 0.9 and 0.7 for sample YBJ15 for its rela-
tively higher SiO, and lower TiO, contents (Sup-
plemental Data S2). Ti-in-zircon thermometry
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indicates that most magmatic zircons from the
'WHS and EHS crystallized in the range 600-750
°C (Supplemental Data S2), while zircons from
the central Lhasa terrane (85°E to 90°E) show
higher crystallization temperatures (700-900
°C; see Supplemental Data S2). These estimated
temperatures are coincident with the formation of
the WHS and EHS zircons and the central Lhasa
terrane zircons in silicic magmas and mafic-inter-
mediate magmas, respectively.

DISCUSSION

Spatiotemporal Variations of Post-
Collisional Magmatism in Southern Tibet

The U-Pb zircon age data show that the
magma crystallization ages of the two-mica
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granite and ultrapotassic-potassic rocks in
this study lie in the ranges of 33-22 Ma and
15-10 Ma (Supplemental Data S1), respectively.
In order to depict an integrated spatial-temporal
evolution of the post-collisional magmatism
in southern Tibet, we summarize 107 samples
from the Oligocene—Miocene potassic-ultrapo-
tassic rocks and 105 samples from coeval calc-
alkaline magmatic rocks published in this region
(Table S3; Fig. 1B). Our age data, together with
the age data in the literature, show roughly three
decreasing age variations from 75°E to 90°E
(from 33 to 19 Ma for 74°E-79°E, from 26 to
15 Ma for 80°E-85°E, and from 23 to 18 Ma
for 85°E-90°E) and one decreasing age varia-
tion from 30 to 20 Ma for 95°E-90°E (Fig. 1B).

Our former geochronological results of the
post-collisional calc-alkaline rocks in the east
Himalayan syntaxis formed between 30 and
21 Ma and exhibited a decreasing age varia-
tion from east to west in the eastern part of the
Lhasa terrane (Pan et al., 2012). The two-mica
granite samples in the west Himalayan syntaxis
exhibit comparable formation ages (33-22 Ma).
Some existing Oligocene outliers do not follow
the decreasing trends described above. These
intrusions are characterized by small volumes
and 5-15 m.y. earlier than the dominant mag-
matism flares along the neighboring longitude,
which might be locally formed by the hysteretic

response to the break-off of the Neo-Tethyan
oceanic slab.

Melting Depth Variations of the
Ultrapotassic-Potassic Rocks

The ultrapotassic rocks in southern Tibet are
considered to be primarily derived from a meta-
somatized mantle source and then contaminated
by ancient crustal materials (Guo et al., 2015;
Miller et al., 1999; Williams et al., 2004; Zhao
et al., 2009). All the analyzed ultrapotassic-
potassic rocks—except sample YBJ15—have
high MgO (3.16-9.18 wt%) and K,O (5.01-
8.63 wt%) contents with K,0/Na,O ratios of
1.43-4.35, and high Cr (76.5-423 ppm) and
Ni (57.1-284 ppm) (Supplemental Data S1).
They show comparable geochemical composi-
tions with these ultrapotassic magmas (Figs. 4
and 5). These features imply that these rocks are
mantle-derived. Sample YBJ15 exhibits consis-
tent trace-element composition patterns with
other ultrapotassic-potassic rocks in this study
(Fig. 5), suggesting that it is also mantle-derived.

Mantle-derived melts were commonly origi-
nated from partial melting of peridotite (Walter,
1998), which is the dominant component in the
upper mantle (Green and Ringwood, 1967).
However, silica-deficient alkali melts, gener-
ally containing higher SiO, and Ni contents
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and lower MgO and CaO contents than those
of peridotite-derived melts (Herzberg, 2011),
were increasingly attributed to partial melt-
ing of the pyroxenite source (Dasgupta et al.,
2010; Lambart et al., 2013). The ultrapotassic
magmas in southern Tibet show high SiO, and
Ni concentrations and relatively low MgO and
CaO contents, which indicate derivation from
partial melting of the pyroxenitic mantle source
(Guo et al., 2015). Our samples show compa-
rable geochemical compositions with these
ultrapotassic magmas (Figs. 4 and 5), implying
that they were also originated from the pyrox-
enite source.

The melting pressure of pyroxenite-derived
primary melts can be constrained by the reverse
model (Herzberg, 2011). High-Mg (>7 wt%)
ultrapotassic rocks are relatively rare, and
nearly 100 samples have been published in the
study area. Energy-constrained assimilation and
fractional crystallization modeling showed that
crustal assimilation would be limited (<7% for
mafic magma with temperatures as high as 1300
°C) for such magmas during their emplacement
(Dai et al., 2021). Thirteen ultrapotassic sam-
ples (including two samples in this study) are
collected to calculate their melting depth (Table
S4). These samples have MgO content of more
than 8 wt% and LOI of less than 1.5 wt%, which
exhibit whole-rock geochemical characteristics
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dominated by fractionation of olivine with
insignificant crustal assimilation. For assump-
tions of depth calculations, see the caption of
Figure 9. The estimated pressures, ranging from
3.28 to 2.22 GPa, show that the melting depth
is progressively decreasing from west (100 km
in Bongba) to east (70 km in Pagu), and two
melting pressure undulations (18—16 Ma for the
Sailipu and Zabuye samples and 11 Ma for the

Pagu sample) are present in the low-velocity
zones (Fig. 9).

Temperature Variations of the
Ultrapotassic-Potassic Rocks

As the studied ultrapotassic-potassic rocks
were originally derived from the metasomatized
mantle, mantle melting temperature variations

could probably be recorded by some miner-
als which crystallized during magma ascent.
Temperatures calculated using a Cpx Jd-DiHd
exchange thermometer show decreasing varia-
tions associated with decreasing Cpx Mg#
values (Figs. 10A and 10B), indicating crystal-
lization during different stages of magma differ-
entiation. For the ultrapotassic rocks along 86°E
(Figs. 10A and 10C), Cpx temperatures of the
older (14 Ma) sample YLSO03 range from 1019 to
1110 °C, and show systematically higher values
(AT = 50 °C) than those of the younger (11 Ma)
samples (9541039 °C). In contrast, the ultrapo-
tassic-potassic rocks along 90°E show opposite
Cpx temperature variations (Fig. 10B) in that the
younger samples (YBJ15 and PGO09 of 10 Ma)
have higher crystallization temperatures than
the older samples (PG02 and PG04 of 15 Ma)
(Figs. 10A and 10B). Together with the crystal
texture features and estimated pressure results
(Fig. 10D; Table S1), the type I Cpx from sam-
ples PG04 and YBJ15 have higher Mg# (80-88)
and crystallization temperatures (1050-1100 °C
for PG04 and 11001150 °C for sample YBJ15),
which could reflect the initial magma tempera-
ture in the lower crust and show 50 °C increases
from 15 to 10 Ma. Both these two magma pulses
show 150-200 °C decreases recorded by type IT
Cpx (Fig. 10D), which might indicate retention
in the lower crust. Decreasing clinopyroxene
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crystallization temperatures are consistent with
their crystallization depths decreasing from pres-
sures of 12-8 kbar to 4-0 kbar during magma
ascent (Figs. 10C and 10D).

Zircon grains were present in the crystalli-
zation phases later than clinopyroxene in these
ultrapotassic-potassic samples. Hence, they
could record the late-stage magma temperature
of these ultrapotassic-potassic rocks. Ti-in-zir-
con thermometry results for the ultrapotassic
rocks from 86°E (Fig. 11A) also show that the
older sample YLSO3 has higher Tri;, ircon Val-
ues (mostly >900 °C) compared to the younger
samples (Trinzircon Values = 670-830 °C). In
contrast, the older ultrapotassic-potassic sam-
ples (PG02 and PG04) from 90°E (Fig. 11B)
have relatively lower Tr; iy ircon Values (less than
700 °C), while the younger samples (PG09 and
YBJ15) have higher Ty, ircon Values (more
than 770 °C).

In summary, the multiple thermometry, based
on clinopyroxene and zircon which represent
the progressive crystallization phases during
magma ascent, exhibit a temporal decrease in
magma temperatures from 14 to 11 Ma along a
longitude of 86°E and an increasing temperature
trend from 15 to 10 Ma along longitude 90°E in
the central part of the Lhasa terrane. Therefore,
such temperature/time trends are likely to record
regional temperature variations (AT = 50 °C) in

the deeper mantle source and are spatially con-
sistent with the high-velocity zone (86°E) and
the low-velocity zone (90°E) at depth of 135 km,
respectively (Fig. 1).

Interestingly, the opposing magma tempera-
ture variations (Figs. 11C and 11D) were also
recorded by the Oligocene—Miocene zircons in
the Xungba-Sailipu ultrapotassic rocks from the
western domain of the Lhasa terrane (Liu et al.,
2014). Mantle seismic tomography images
(depth at 135 km) in this area show that low-
velocity and high-velocity zones are present
under the Xungba-Yare area and the Sailipu and
Zabuye area (Fig. 1A), respectively. Published
data exhibit a decreasing T i, ireon trend for the
Oligocene—Miocene magmatic zircons from the
Xungba-Yare ultrapotassic rocks and an increas-
ing Triinireon trend for the Oligocene—Miocene
magmatic zircons from the Sailipu and Zabuye
ultrapotassic rocks. These features suggest that
the zircon crystallization temperatures of these
rocks and the mantle lithospheric morphology
are also coupled.

Interplay between Continental Slab
Tearing and Asthenospheric Flow

Late to post-collisional magmatism in oro-
gens has many causes (Kusky and Wang, 2022),
including slab break-off (failure) or tear-related
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plutonism (Davies and von Blanckenburg, 1995;
Dilek and Sandvol, 2009), crustal thickening,
orogenic collapse (Dewey, 1988; Kusky, 1993),
and core-complex formation (Whitney et al.,
2013), or large-scale lithospheric foundering
(Bird, 1978; Zheng et al., 2022). Magmatism
from these various sources differ from earlier
arc-related magmas, in that they tend to be dis-
tributed for up to hundreds of km from associ-
ated sutures and can last for tens of millions of
years after the main collision (Kusky and Wang,
2022). Slab break-oftf and tear-related mag-
matism are typically characterized by higher
Th values than those from the normal mantle
array due to involvement of earlier subducted
sediments (particularly if passive margins are
subducted), and tend to develop increasingly
alkaline geochemical characteristics with time,
due to increasing asthenospheric input with
time (Wilson and Bianchini, 1999; Hildebrand
etal., 2018; Kusky and Wang, 2022). In addition,
plutons of these suites intrude late during the
collision-related deformation so they cross-cut
earlier structures, but typically experience addi-
tional later flattening, deforming the plutons into
domal structures (e.g., Hildebrand et al., 2018;
Kusky et al., 2021; Kusky and Wang, 2022).
The Neogene magmatism and E-W exten-
sional faulting in the Tibetan Plateau have
been attributed to the convective removal of
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the Tibetan sub-continental lithospheric mantle
(Chen et al., 2017; Chung et al., 2003; Coleman
and Hodges, 1995; Turner et al., 1993; Wil-
liams et al., 2004; Wu et al., 2022). In contrast,
movement of the N-S—trending normal faults
and grabens is traced back to the early Miocene
(23-14 Ma) and shows eastward propagation in
southern Tibet (Bian et al., 2020; Coleman and
Hodges, 1995; Mitsuishi et al., 2012; Blisniuk
etal., 2001; Williams et al., 2001). Their ages are
significantly younger (>10 m.y.) than the onset
of post-collisional magmatism. Post-collisional
mantle-derived mafic rocks are widely distrib-
uted in northern Tibet (Guo and Wilson, 2019;
Turner et al., 1996), in contrast to the relatively
local distribution of mafic rocks in the central
and western Lhasa terrane in southern Tibet
(Zhao et al., 2009). They are almost entirely
absent in the Himalayan terrane where crustal
anatexis events are widespread from Eocene
to Miocene (Zhang et al., 2004). Furthermore,
the age variations of the Oligocene—Miocene
magmatic rocks seem unsystematic in south-
ern and northern Tibet (Ding et al., 2007; Guo
and Wilson, 2019), which is also unreconciled
with the pervasive N-S—trending normal faults.
Therefore, sinking of the Tibetan sub-continen-
tal lithospheric mantle does not appear to fully
explain either the post-collisional magmatism or
E-W-trending extension.

The Indian lithosphere is generally accepted
to have been subducted northwards beneath
southern Tibet as indicated by mantle tomo-
graphic images (Kosarev et al., 1999; Tilmann
et al., 2003). The lower Indian crust is likely
to have undergone ~30% eclogitization before
descending to the Tibetan upper mantle (Schulte-
Pelkum et al., 2005). This partially eclogitized
lower crust of the Indian slab would result in
the break-off of the Indian lithosphere due to
its increasing density (Mahéo et al., 2002; Shi
et al., 2020). The break-off model of the SIL is
consistent with the scenario of a sudden decreas-
ing convergence velocity (from ~85 mm/yr to
45 mm/yr) between the Indian and Asian blocks
(van Hinsbergen et al., 2011), due to loss of the
pull force associated with detachment of the par-
tially eclogitized subducted slab.

Tearing of the SIL has been interpreted from
mantle seismic tomography images (Chen et al.,
2015; Li and Song, 2018; Liang et al., 2016;
Liu et al., 2020), although the tearing positions
and slab angles are debated. Li and Song (2018)
reported high-resolution seismic tomography
that shows four pieces of the torn SIL with differ-
ent angles in southern Tibet. Slab windows along
the sectors 82°E-85°E and 88°E-92°E in their
tomography images show a strong relationship
with the regional N-S—trending rifting (Fig. 1A),
implying close links between the crustal defor-

mation and the mantle lithosphere. Our collated
age variations of the post-collisional magmatism
in southern Tibet show some spatial consistency
with the four sections of the torn SIL (Fig. 1).
Diachronous break-off of the SIL is proposed to
have resulted in the spatially decreasing varia-
tions of ages of the two-mica granites in the
eastern portion of the Lhasa terrane (Pan et al.,
2012; Zhang et al., 2014). Similarly, slab detach-
ment was proposed to propagate eastward with
the younging trend of the magmatic rocks in the
western portion of the Lhasa terrane (Guo et al.,
2015). Webb et al. (2017) summarized that slab
tearing led to slab detachment initiating at both
ends of the Himalaya at ca. 25 Ma, then migrated
toward the central Himalaya. The compiled age
results in this study further show that the post-
collisional magmatism was initiated earlier in
the EHS and WHS and had two age undulations
in central southern Tibet (Fig. 1). Hence, we
propose that four diachronous break-off events
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of the SIL occurred in southern Tibet during the
Oligocene to Miocene.

Three-dimensional numerical models show
that subducting continental lithosphere would
be initially steep and then flex upwards and flat-
tened below the overriding plate, after the break-
off of the eclogitized slab at great depths (Magni
et al., 2017). Diachronous break-off would lead
to variable angles of the subducting continen-
tal lithosphere, which would be torn when the
angle difference exceeds its limiting value in
their models. It could lead to a contrasting evo-
lution of the slab windows in southern Tibet: the
81°E (26-18 Ma) and 86°E (14—11 Ma) slab
windows might be closed by the subsequent
opening of the adjacent 85°E (25-15 Ma) and
90°E (15-10 Ma) slab windows, probably due
to rebounding and lateral motion of the torn
SIL impacted by the asynchronous astheno-
sphere upwellings (Fig. 12). These geodynamic
processes could be the original causes for the

Figure 12. Schematic tec-
tonic model for the evolution
of the Oligocene-Miocene
magmatism in southern Tibet
corresponding to suture-per-
pendicular tearing and suture-
parallel foundering of the
subducted Indian plate. The
pentagrams represent sample
locations as in Figure 1. The
gray regions depict the specu-
lated pattern of the subducted
Indian Plate from surface to
depth of 135 km.



opposite variations of mantle-derived magma
temperature observed in this study. The melting
pressure variation probably indicates the pro-
gressive rising of the lithosphere-asthenosphere
boundary (Figs. 1A and 9). The resultant asthe-
nospheric upwelling distribution is consistent
with the tearing of the SIL along 82°E-85°E
and 88°E-92°E (Fig. 1A). Furthermore, lateral
motion of the torn SIL caused local decoupling
between the age spectrum of the post-collisional
rocks and the recent mantle tomography (Fig. 1).
For example, the mismatch along the 85-87°E
sector, which might be one former slab window
but is not clear from the tomography image, is
probably a result of lateral motion of the torn SIL
impacted by the asthenosphere upwelling along
the 90°E after 15 Ma.

Ongoing diachronous break-off of the SIL has
been reported in the Hindu Kush in Afghanistan
based on seismic tomographic images (Kufner
et al., 2021), which implies that it may be a
common geodynamic process in a continental
collision setting. In southern Tibet, magmatism
associated with break-off of the SIL shows geo-
chronological variations trending north-south.
For example, magmatic records in the EHS
show a south-to-north younging trend ranging
from 29 to 21 Ma, while magmatism in the Tan-
graYumco-Xuruco rift (86°E) shows a north-to-
south younging trend ranging from 24 to 8 Ma.
Thus, the diachronous break-off events of the
SIL and the resultant rupturing of the continental
lithosphere have important implications for the
driving force of these post-collisional geologi-
cal processes across the Tibetan Plateau. Based
on the compiled age spectra (Fig. 1B), the lat-
ter break-off event (26 Ma for 80°E-85°E and
23 Ma for 85°E-90°E) started earlier (7-8 Ma)
than the cessation of the former event (19 Ma
for 74°E-79°E and 15 Ma for 80°E-85°E). We
propose that this feature is most likely due to
the northward depression of the asthenosphere
underlying the SIL. This mobile asthenosphere
first advected through the weakened portions of
the overriding Indian lithosphere at the WHS
and EHS at ca. 33 and 30 Ma, respectively, and
then through the other two tears (26 Ma for 80°E
and 23 Ma for 86°E) in the central part of the
Lhasa terrane (Fig. 12). It induced diachronous
foundering associated with upward bending of
the Indian slab, further accelerating the tearing
of the SIL during continental subduction. The
northward flow and the rebounding of the SIL
may have significantly facilitated the lithosphere
deformation and uplift of the Tibetan Plateau.

CONCLUSION

The distribution of Oligo—Miocene magmatic
rocks from southern Tibet in space and time
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yields critical information on the geometry and
deformation of the SIL which impacted plateau
growth following the collision between India and
Eurasia. Here we report variations in the crys-
tallization ages and temperatures of these post-
collisional magmatic rocks, demonstrating that
(1) timing of these rocks exhibits four patterns
of decreasing ages approximately corresponding
to the torn SIL and (2) contrasting trends in min-
eral crystallization temperatures and decreasing
melting source depth recorded in the ultrapotas-
sic-potassic magmas corresponding spatially to
regions of slab window and flattened subducted
lithosphere as recorded by seismic tomography.
These data sets together imply that the focused
mantle flow may advance diachronously through
pre-existing weakened sectors within the overly-
ing SIL. It could induce diachronous foundering,
associated with the upward bending of the Indian
slab, which consequently led to the tearing of the
SIL during continental subduction.
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