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Abstract: Thanks to the rapid development of seismic wave propagation theory, emerging of data analyzing
methods, and the increasing coverage of the seismic exploration, our ability to probe deep into the Earth has been
increased from the scale of 100 kilometers to the scale of kilometers at present. The existence and wide-distributed
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heterogeneities at a scale of thousands of kilometers in the massive lower mantle have been revealed by seismic
tomography for a long time, while the knowledge of smaller scales (~10~100 km) has come from high-frequency
seismic scattered wave detection techniques that are mainly based on array analysis. A growing body of evidence
shows that multiple-scale heterogeneities distribute through the Earth's entire lower mantle; the heteroge-
neities have been attributed to basaltic oceanic crust and its underlying lithospheric mantle. Therefore, detecting and
characterizing of their distribution and formation mechanism will help understand the material composition, mine-
ral phase transformation, and thermochemical structure of the Earth's interior. Furthermore, they shed light on the
thermochemical and dynamic processes of the Earth's interior, such as mantle rheology, convection, and mixing ef-
ficiency. This review focuses on the small-scale heterogeneities/scatterers distributed in the mid-lower mantle at a
depth of ~700~2000 km. Firstly, from the perspective of the definition of the scatterers and statistical description
of small-scale heterogeneities, we introduce a variety of seismic waves, acting as the "probes" for the small-scale
heterogeneities in the lower mantle, and then summarize the characteristics and limitations of available detection
methods. Moreover, some representative studies are briefly reviewed. Based on the data of more than 200 lower
mantle scatterers collected from previous publications, we characterize the distribution of scatterer's depths. Finally,
we point out some unsolved problems in the detection method of lower mantle scatterers and propose the prospect
for future research directions.
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Example of two-dimensional random velocity disturbance of different models. (a) Gaussian type, a=5 km, ¢=0.05, where a
represents the correlation length, reflecting the characteristic length of the scatterer, o represents RMS (root mean square)
velocity disturbance. (b) Exponential type, a=5 km, ¢=0.05. (¢) Von Karman type, a=5 km, 6=0.05, x=1.0, where « controls
the proportion of large-scale and small-scale abnormal bodies. (d) Von Karman type, a=5 km, 6=0.05, x=0.1
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Fig. 2 The schematic diagram of scattered wave ray path. The
diamonds represent deep mantle scatterers; the penta-
grams represent seismic events and the triangles repre-
sent seismic stations. The solid lines represent the ray
paths of different body wave seismic phases received by
surface stations, such as the direct P, PP, PKPPKP and
PKIKP waves. The dotted lines represent the ray paths
of the seismic phases scattered by the deep mantle scat-
terers. The figure also shows the ray path of a new seis-
mic phase PdpP. The original PP seismic phase is first
scattered by the scatterer, and then reflected on the sur-
face once, before received by the seismic station
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Fig. 3 The schematic diagram of SdP converted wave. The S-
wave that emitted by the source will meet the disconti-
nuity or scatterer located at depth of d; it will then con-
vert to P wave before received by the station
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Fig. 4 Schematic diagram of migration imaging. The x represents a scattering point, T represents the travel time from the source to
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Wi, (HAER &R 50 & L A7 {E A 17 22 7. Kaneshima
A1 Helffrich (1999) 3@ it} b HL W 44— vk 3= 5% Je H
R RFEMIFII, o T HbE o e 4e 4
PEURAEER AL 5144 G EET9T (Kaneshima
and Helffrich, 2003) 4457 5 BV 40 AR A6 X 45
1000~ 1850 km PG Fil A AETE 2 405 PAT (1) 5 3
s LEPEACPEHBIX BRI T/ UE (<10 km)
B AR I AEAE, h AT BE A T Hg VR & 1 45 1
( Kaneshima and Helffrich, 2009, 2010) . Li f
Yuen (2014) 7EREARAb. K2 W8 & e Ll K&
H AW HO X I T 2345 T 920~1200 km ¥4 5 &b 1)
BN A, R TR AR Aty P b o 36ty oA 1)
FP T PERR R AE 2 (AL B B A, BT

7 Izanagi B H AR E N R H2 1) 5k B A4 He Al
Zheng (2018) 7EAFEL-/NAE J5UL b 45 45 b X
930~1500 km & [ Ab #0021 2 4b 1 Hh & 555 14k
55, WA Rl B 77 2R 1 N ROBE 443 53 A
K. Haugland %5 (2017) F F B 56 Y 2% st b 72 A
USArray 5 BEIIB IR L%, 78 1750 km 38 B AR
F) 10 km JERHUG A, JCNRFIR 2, X A0SR
S-P AR i B, MM, ARG A TR
0 B PETY IE TR 45 R W EUN R 1) S P
S AE—1.6%~—12.4% Z [i], AR T i N R b
WA o LA TR, AT DU R A& T
Jei 0 A 0 AF AR P AR () B ) RO R0 K R R . Rit-
sema % (2020) 7% USArray & FEid %, 6
P VR b 5 AR R 2 2000 km [ BT 6 3l %
HHES R B A TE T S-P REAH, HARBLH LR
TE AR 3 3o 6 A2 A R T AR A PR L YA 0L A
s 2 10~20 km JELFEE5E 40 Hbs T & 2825
1, R WA 58 RS A O b 20 R M BE S (1T Mg
Je, VRELRER 10~20 km (1) JE .

2.2 PP B

PP {if SR 38 72 P U8k A [ W 117 sl S 5 A4 G — X
B E B REA, A8 BE RN B B AR 10 SR 1) PP i
FEATAH G /N T PP . PP FTIKE ] REds T+ b b (]
W T (6B S 5 (T, Shearer, 1990), ] fE>
H T Hb 2 B R S 1/ o AR R AR R RR RO Clan,
Weber and Wicks, 1996) (P4 2) . B Sy M= 10 =
cHR) PP KU W A SR 00 4 B 2 3 (] B T
——660-km 1 410-km 5 [ ¥ &2 K F1 P 5T 42 44
(4, Rost and Weber, 2002), {H b F f # %%
K, EAUEFEEMKT 20 s; Pk, AHMN O FEE R
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(Fresnel zone) K, Zp#HRENAM (41, Day and
Deuss, 2013) .

X HLGE ) PP FT IR S TR AR e il sk
PP ¢ B4+ 2 AP HRAL, AT DAAE S, o Ay
HhRE B I ORI B0 A R I R e e, LAY
1 Hz, {587 T Hi g SR A4 I 5 A7 88 1) 43 %
# (Bentham and Rost, 2014) . 5 S-P §& 3 A A,
PP ij B PR U AN Jm PR T R VR B 3 X 3, PRt
HIFH & 53 B BRI B K5 B8 AT AT — 5 XA A )
i = W e Bt v AR AT U R I A2 BRPE 2 A (o,
Bentham and Rost, 2014; Rost et al., 2008) . {11 PP
HTORBEAE 5 o0 gs, ZEAEEE— PR O 3R
B ISV EREA] HE A HEOUR A 3 M SR ) LA RO 25 A
o PRI HEE.

Rost 55 (2008) 5. H Ji fi W1 3t 7% &5 B PP
IR A T T T R AN 1 A AR R A BR Y 23 A1
ML % B b, ORI TR 2 i B K T3 B A28 11 v
A PP R SR S RE R, AN B TR HIE N REEANY) —
P JEIN . B L 9IREVA R O B AR ) =
[B) 7 A IR 2 ) Y — 4 2. 2B 2 E2 2> 1000 km 75
55 (R BT &5 AL, Ry 2 1 DRV S A PR e A K
Bentham £ Rost (2014) FJ F s 25 K [ i# 42 [f] PP
HUORE,  AEPE AL AR i T 7 2R 21 25 300
NI A, o3 Ao T B T AF R/ B gh
A e DX 18 2R A0 S A ) g ) S —AMBUARE L B 3]
1480 km ¥4 [ (1 #E - 10 45 44 . A B JE 04 I

(Ancient Indonesian) iffiEEA T, RILT HE
1880 km FRJAEF- [HTHLSN 4544, SEfr b, AT X
SEXLI 21 () PP FTIK R 73 A HH T e Bl b b
HUSH 13 . Bentham %5 (2017) 38 i % 4> Bk 65 1
N PP SR % & e 2 M, B R Mg
1000~ 1800 km ¥t [l 4 Gt 113 SCE AN IS 5 1 ot
H 1%.

2.3 P'P'HIIKE

P'P'HI 3K % HD PKPPKP R 9K (& 2), $#24t

T AP ERI AR T H g SO A A Tk
H T (rLLkFI~1 Hz), AFMEB/NHAESR
JEXEFR ARV R, DR R ARSI /N R S A 1)
Iy HE ] DLk $~200 km, T 1] 43 2 0] 7K ~5 km
( Schultz and Gu, 2013) . LeStunff 5% (1995) 7|
FI PR I I 3 T b g A, A S IR
BT HWE T050 785-km Y B AL 14 TR] W 1. 2 s A
TR BABA DU 1) PR IR I A5 55 N 1% A2 JE TR

% 42 ) PKPP i BY Py PKP % 41 ( Zhang B et al.,
20200, R 1) 45 AN SRR AR B 6 785-km [H]
W AR A7 AE

Schultz % (2014) #&H THET REH. &,
Radon 72 # FR FE I # (1) 045 o0 20 2%, FIH PP
TS 2R I 1) 24 37 I - B S AT b AF 700~800 km
REEMI SRR, TR 1 M0 o 8 Y FE 1) s
SFFYR, R SRR, W RBiRE A (sharp-
ness) M T 4HEIT L. Rost &8 (2015) NI A &
GEHL R T R S FLAR S B PYPYET IR BRI AN [
DRPE N Mg B A I RE s HLJS Frost 58 (2018)
F 48 iR AR A LA £ B PP IR BRI R e A T
T b S R AL, RIS R TS A
D"JZ NI HURME A F &, It 1T Huhg s 4
BRI E AT eAB . B v T A B A A . R
HRSFIARE PR A B ) 25 R AH DG, R T T g
HUR AR B 3) ) 2 A

2.4 PKP BIIEH

PKP F 9% (18 20 @ #ih &t D)2
CMB (/)4 T 2 AR B 8 5 JE 08 P AN 35— 1 s
(U1, Shearer et al., 1998; Wen and Helmberger, 1998;
7r %%, 1983) . PKP & i i S 1) P ——
PKPy,. Ml PKP,, PY S (LR 70 ¢ 4k Je A He s, B
PKP g IR 17 90 98¢ T XA W0 0 1) 3 2K vy A0 17 90K U8 1K)
I M 0 R LR, AR R A R A s B b O F|
( Gutenberg and Richter, 1934) . Cleary #1 Had-
don (1972) BHF4r Mt T IX S HU Hb = U fig & 11 ok
U5, I R T O A 1 S DRI D R b e R 5
WG R R RBUR Y, PP RUIR S 2 T 2 1)
V.
AT PKP i 0% 38 48 D0 SRS A4S 1) i) AL 3= AR L
1, EALI P PRRAEAEARAC,  JCHE WO AR IR 5
V50 ST R AT S 38 2 b B A L X
TOXPREUR T8 AR MR 7T S SO AR R
2 H ML Rk IR (Hedlin et al., 1997; Hedlin
and Shearer, 2000) . W R AT DL R E RS 5
PKP g AH IG5 25 75 ) RSB, W m] AR T %0 i )
RS AR I AE (4, Cao and Romanowicz, 2007;
Frost et al., 2013; Ma and Thomas, 2020; 3 /itl % Fl /&
M % 2009; Thomas et al., 1999; Wen and Helm-
berger, 1998) .

2.5 P-S HEHE
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MER AR R HE 1) Pt A L BRVAHS 1F) F T B 1L
SR R AU, AR R Ps BT . HLER I 7
TR BT R B ek B R Moho THT . Mg
T TR BB TS A —FF

Shen 55 (2003) {EUK & B3 EAE )
JI BT X R B0 T R S 1050 km YR AL AN E
SR, AN A SR A BRE T, St R R )
A SCRE IS PN A AN R AL 276k () g ) ) 2
PRI B e b X R O S A U R B O L
LT 6N T N HulE 860 km. 900 km. 1200 km A1
1320 km ¥R % 1) Ps B4, WE 7R T 7E )= 3 Hh 3k
AF AL NV BE () S FE 1 (van der Meijde et al.,
2005) . Jenkins % (2016) FJ[] P-S #: 4 w77 1
VKT 75 (1 M i AN A 1, R BRI K
FEVE T 77 800~1400 km 4 FE V1 ] P 47 £ Hh 75 38 &
BEEL, EEHIIAE 975~1050 km RJE 2 0], JHik
h I FPANT S 1 E A2 P AN [ %) M A4 T 1
SIS, BBl & b T e A e it /N R b
B ETG1E.

2.6 HthRESGHRIRN G E

BY LT SIS R (RS 3 AR mT DAV R0 b A
RIS “HRER” N SeS Z IR A, SS AT K
WA, EATIAL R o] LAERIN 5 5l 5 2D (R 3 X
Hby T S TR BT I8 £ B2 AR B SR AR () A7 A . Courtier
A1 Revenaugh (2008) HJH] ScS 2 Ik S S e 42 B 1
SH I S S 2 Bt R BE AR Ak, RS 2146 58 YR
b DX Mg A7 I S B BH BT, AR g v g
TR FEE 1R S TH 0 B . (H SeS 22 W s i it 1) 3
WI— AR 200s, Sk LLTRIN /N RORE S 4.

SS HI 9K I A2 B A R R RBE
SERII CHREL T, AN G Sl R RE AN Y
IOy AL, AT LRI RS AR 1 A BRI AT
Waszek 55 (2018) A I SS ATk, REHK
T T ARBREH )T HuE SO A (reflector) 1R 43 Al
FURFAE, 75 800~1300 km & G H 4 & 3L T K5 1)
JUBE 500~2000 km (1) B4, B0 BT SR &
LA R MRS 1, 5 MRS R BT G 5 H
FE S A OGP E I 7 T vy TR g R FESE N T
LAEAED TS AT —

TEEF IR T 80° i Zid &, PP iLAf
FE 5 — PR A AT Bk % (id 24 PdpP 8% PPdp ),
A 7 TA R 1 v ] IS R B AT IAEAEAE PP R
FZ AT 20~50 s I B 4RIE, 188 HAC, A T Hik

P (BK Py A AIPP P20 L, 2021) .
PdpP JAREE T MR H R B P IAEIRE N d IR
SF /SO A TS0 s ST S A R R A — IR R S T
AR CIE 2>, n A R UM & 55 1fi PPdp 3%
WA 56 B IR 5 0t 5 % P O A 1) B ST %
WA A KR B AR 3G, XA PP AT IR IS
SH HAT FIRE R R RS . Y (2021) R
FRRERR ) PP TSRS, 7RG N RN BT 4
Fi{E 700~ 1500 km 37 5 76 Bl Y (1) — 471 v b 14
S, TR e I ) 1 R AR I L R A b
KT 10~20 km, H.PGAb-Z< e [] FRO A ) 23 A i Rl 22
/KT 3500 km. X B2 1040 A B A X U 1R
R AT BE R W AE 1000 km VA A f  ob B B
K.

3 H R R PR IR T M
ZINEN

Wit o 0 b R U AR R B VR AR THERE
(R4 TH AU E s PR B4 I, DA R T30 22k LAl
(1) Hh 72 5 7 R T VAT B R e i Bl
Z TR PR et P EAH G R 0] LAAR 3 5 i 1) 1AL TR
FEAR BRI, 1T SRR 5 23 7% 6 1 M BR A Jo 3 E ik
% CEEL 5D L pH T T M 7 YA 1 St s A s e oy 2
ST, AR D MAHIC R AP SR I R, MR T &
W T8 s AR A e 25 1 LA B TR A i il by 3R L
e 73 HR IR R VA A b b T EE S A5 () — i A
T-B.

ML TS S R R A, ek TR
P b () AR AT T B PR kL R A T

(1) ORI g g A T Bk R i, 7 2B RS AR A
WAF T MR R, R AH X s (2) 4k
WAE A TS TR g9 . A m . Sk s
(Forghani and Snieder, 2010) . T3k, Fifi 5 X}
FEUE IR N TA VR BA B % B2 000l 54 1 34, W s
PRI PAT 5 T 3RAF D) IF 2 W N T T H Bk A 36
SERII AR VR i, A S M o N B AE i
S5 (Xieetal.,2021; Zhanetal., 2010) LL& I Hubg
[B) D7 107 S 8 44K (A, Feng et al., 2017; Poli et al.,
2012)5 M 5~40 mHz ) & J& #1115 50 b 5E Bk
(seismic hum, tHAY “HbE”, Benioffetal., 1959)
PRI A BR R 2 R I BUAR B AL 3R MR R
Hho B I 1 Y A% ) PKITKP-PKIKP P IR £ 3R %
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Fig. 5 The diagram of the method of noise cross-correlation. The cross-correlation operation between the environmental noise that

recorded by the station S; and the station S, is equivalent to taking one station as a virtual source and the other station as a

receiver, and it can be applied to retrieve the body waves reflected from the discontinuities interior the Earth

(Wang T etal.,, 2015) 4§, #B i 4k ol B AR
(10 1t 7 e 7 i AU A 5 PRI A

Zhang L 5§ (20200 #2207 ML FE 1 5t
FE R IOR B R Mg SO AR AR BAE S BETE AT
AR ZRAG 1 X AT Ve 3 AR 5= 6 B fictls, AERT A
SR 0 () BT T S S A8 7V IR A T R R T 3
RS AR N7, HLAS W NS ok AR
HPE U A ERE S RS IR BIE T, AGE
TR YRS BN o 5 s ol N T TR D o 22 7 S i
FE 55 2k 200~220 s ALK I T ok H T Hb 1)
PP SR E S (] 6a) . M ZMe R IS 5
IPE BRI, U ATIERT L3 B T R IR bR
Yy S-P U U, R LI R e R R L) PP A&
WAF T BN ROMR IR RS S-P 7% AH e i 21 2% ] 7
FCHRGL, RATRER A T RN U g R
PP = AH M 52 S-P 4% i (R I B TR A 40, B0
S W PR T -T2 % 02% K
0.6 % I}, FigHE E W g R GmtE (K 6b) .
b Ak S UES S R VR N N A S R RUE I SN
B FHMR V5T, AR AT RE S 22 1Y Tzanagi fif T AR
AR GRS % B A0 ¢ (Li and Yuen, 2014) .

4 T Hh A AR AR T O3 A1

HIT A R R e “ IREH” HAT AN 19 73 95,
b R A e AR 1) 22 S g T O A [R] A 3 X 4k
RAEIRIANTF s DA IR A PR A7 8 A Al 7 P LA
A ST R SC. AU R (R B 20 A T L
NS AN VELE R E IR, 2 T ARk
VR GE K L MU AT AR 1k DL e i e X I A 5% f) B
&35!

EPoY

FATLA Kaminsky (2017) TAEH G115 211
1998—2017 4 [A] ' Mg A 35 5 A £ 4 o4 L Alh, i
LT 2018 45 22 A A [v] 27 35 I FH b RE 27 7 VAR D 3
(17 Mg U AR BEAS B, 3L 206 N4, 4
KEBork BT S-P HUNIE “HREH” MR, A
53K H PP, SS HI 9K P57 (He and Zheng, 2018;
Kaneshima, 2018, 2019; Ritsema et al., 2020; Schu-
macher et al., 2018; Waszek et al., 2018; Yuan et al.,
2021) .

M 7 ATLUE Y, ol R RS0 A) i = A
THEPAEH A XL (1) 660~1300 km (1) Hupg
TR AR AN AT 5 R B IR X3, A 12 X oM 22 2|
IRz BVEC A, A T AN N R R A
I 70% L L (2) 1300~1900 km (1) T Haig o
T, 29 20% (19 Hiu0E F5CR A TR 1% R B S BB R
F; (3) 1900 km N[ F Hul@ 451, HOUW I 2]
W/ B O A oy A e, 75T MBS VR 800~
900 km. 1B 1500~1600 km &b 43 %Il 17 76 P A W%
KA.

T S-P Edls U T VSR G 78%, RILAE
DRI 7 IR U R IR BE AT I, B 5E TR
P L8 S-P SR U 43 At v s i SR FH PR R 5 3 A
SR A o DX 3 b SR P [T A R 2 ER T T
KA (—BHEEX P HJEN 15~150s), S-P
JHETCIERIT T Hulg By 1) 600 km, BTV B I
2200 km [y X3 53— J7 0, %07 AR IR S
1800 km DX 355 AR /D BR300 S R, 3850 B PR T REAE
TAEAEH R 2R IR 22, (HSE A ] R i 77 &
Fh AT M ERH 2 SR LS, RIS A PR A
S i B A EAN R B 2R T AR K AR ML, 5T R
AF I 58 R R T A DA AR 52 21 AL R HLO B 11 5%
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Fig. 6

Body wave reflected from the lower mantle scatter is retrieved from noise cross-correlation. (a) Through the superposition of

slowness spectrum and phase weighting, we can find the X signal of lower mantle scatterer clearly; (b) Synthetic seismograms

calculated for PP phase and the test for the influence of thickness of the scatterer and velocity model (modified from Zhang L

et al., 2020)

W, fe KAHARER L) A 1700 km /247 (Tsuchiya et
al., 2004), FHERI 2 1) 2K 22 HHH AR #R o A 18
1700 km DLy (R 250 [ 88— 35 76 1000~1 100
km PR AL I3 A AT AL 2 IR A, 3K R JE T 1k
8045 B a5 R b AR B o o Mg o I AT S AR
900~1200 km ¥R B2 R A AF LB W) &, (B L
W% (Durand et al., 2017) . X &5 B EE A
TR AL S 3 B 1R 4k, I 2R — AR H A
R4 5 Ak 2= A8 A, L3 R AETE 40~70 GPa
1) Fe B FERASHEZS (40, Nomura et al., 2011) 777
KT BT N 2 IX 6 ) AR TR RTINS H g O A 1)
PEE S WEE U AR E 4 S RS UE I 2R,
TR HiE S A6 M BR VR IR “SRRE” rhgkEL
HME ZH B WIS ST T, B\ URH L R

P R e T MR P AL
5 MR RN RN ) KD A JE R

FERIT i L, BT M & B ) 0 B 5 AR
TR AL P 2 TR, (At EAT €
(KR R B, & B2 W D7 idoxt & il i A A e
T — M ESR, BR TG A B A,
X & FEIRAFLAR AT Se 4 g (1 23K fLARIL D,
G FE T TR SR S HeRAME s fLRIEK,
VUL NS85 98¢ I T AN ] R R P IR, AN PR AL 2 5065 B
0 AT SRR N S I 30 T T A6 2~ 1 U PR R AR AR
SE . T g N RO B AR ORI, g BEARE P
WFFT HARR & BESLAR RN B 2 PR o) s i
5 DX 73 XAE RN BEZE A AR A 1 E
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Fig. 7 The distribution histogram of the scatterers' depth. The horizontal and vertical coordinates are the depth of the detected scatter-
ers and the frequency. N is the total number of scatterers collected. More than 70% scatterers are distributed in the shallow part
of the lower mantle, 20% scatterers are distributed in the middle of the lower mantle, and only very few inhomogeneities at the

bottom of the lower mantle

(U1, Kaneshima, 2019) . 74k, 40 Ge88 44 H 5%
JEIE M RE B BT, YR HLEAE S-P R AR
A REFIR IR LR —FE A, IXAERE AT LAF T % 7 v
SUIE T3 SR AT vt DX A B b PR =% ] 5 Bl )
M| (Pavlis, 1992) .

O AR A RSB, BREZ ML ESS, iE
T LA SR T, AFSLRTEAS . DItk tl
SEINCAZY R, I SR AE B L AT DU U 3 PR
BRI AR — L8 PR AT A 3 — Ak N R A
P — R oo IR HE. 9 an, 48K 2 50U S
ERARAUGS « A5 M LA, AR B Bl A A
ST DI ARA 45 HAERI 29 R IR B TN 22
oy FEUR AU, 3 T 8 2 e R — AN R
PRSI TE G 3N [A] (1) 28 N 4 SR vT BRAH 220K
Fy—J7 1, AN AR I B AT g S N AR A ER
IR IR & B B AL s P X TCSE K T s 15 5 4%
B XERE, fHRII 22 ANl 7 Hb R £ B 0 00 I R 2 1t
T 211 B 2 U A 25 o) A R0 LA T 25 14 0]
PE. LA S-P B3RP A, AEAS D0 R B AR o
(1) S-P BB AG O,  ILHRIE 5 7E 660-km (7] W ifil
(1) S-P %6 6 e H AH 4 2L 42 B i I S8R I 1) i
R @ i - Rz NP (0 oy A IS S lge B 775 LY G BT
FES AN, AAEZHEN T, XK R
G AEFELETEAR ST I I SR b, S-P Rk 1K SR AR

MR AE P 75 ZE PR, DU RS BN I I R &
T ZY AR T RE U A R RE AL PR S YRR AR
SPAEAE AR DRI, AR T SR iR M AT AT S ) R
TIN5 BRI 58 AR 2 B 5 e OB I, 2
NGO G T BEAARE TR AR PR T T 2 L AR AR R R
P I (Korenaga, 2015) .

NS M 7 e R IR M A (5 SR T — b
FT R HE AN A AR PRI . G T bR T R
(R e A AR ORIV AE e TR — AN G b AR B
FEFARR R . XA “ LUl BB AL G g 7
ETCE AR, RE i o 2 U5 A7 L 1 AN o PR
S 5N ) R B80S R P e SR (R AN R 5 i) s R IS B8
T R R U P 7 R R B, S B e 7 i LA
SERFAN R R s DX ISR PR R A, BE O TR 2, M s h
PRBAT 5 () DA B A 1B 5 ) FH R R 7 <A1
MR, SCILZ A HBRE R (I P S B A
LY Hiu FSUR AR SR 1 5Tk ok FT .

BrUb 2 A8, HETE 2 B0 R SR AR T vt

ARG EEHG I RIZ L IR T AN RAN ] A 3 7
st NN AN ) o A A RN 222545 2% 18
ANTFIHRE “BREE” SR R 22 3 R A i x
RO AN AR A AR AL LA R S
AR SRR . R A
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TEIXANERE S, DRSS AN TR e T
CRRIRZN 7 ARG B 8 /N AT SR R
M (Ward et al., 2021) . 76 FEiS A 504 PR (115 5
T, AR KA R R RE B CRE,
PRI 2 M Z 00 T 45 5, SRR o B
2 WS IRE B FEREAE , 5 B o8 EInpaE . REHE
PR B R VRS /N RURE BSOS A S L S5 R ik, E T
S il = AT ) B S 5 R e ) ) S R AR,
AN SR 5y, #8578 AN SR B L A
TEFEA M Bk B ) 2 s A AR P A .

Bugd

SR O e R M G AR T 20 R AR B AR R, LIk
MR FE RAEAT 1A S I8, — PR Bl Bl =7 e
AR R N AR D AR F R4S T SR SR, (A S

2o
S
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