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The mid-mantle (i.e., the top lower mantle) roughly repre‐
sents the mantle portion ranging from ~700 to 1 600 km
depths. It has received increasing attention mainly due to two
facts including (i) subducted slabs largely trapped there (Fukao
and Obayashi, 2013) and (ii) plume necking and lateral pond‐
ing at ~1 000 km depth (French and Romanowicz, 2015). A
number of mechanisms have been proposed to explain the slab
stagnation in the mid-mantle, such as the increased viscosity,
controlled by either ferropericlase (Marquardt and Miyagi,
2015) with its iron spin transition (e.g., Shahnas et al., 2017a,
b; Justo et al., 2015), or bridgmanite-enriched ancient mantle
structures (Ballmer et al., 2017, 2015); the viscosity jump, con‐
firmed by reanalyzing the long-wavelength nonhydrostatic ge‐
oid (Rudolph et al., 2015), may also play a vital role in plume
dynamics in the mid-mantle (Xiang et al., 2021). A recent
study suggested the existence of meta-stable olivine within the
subducting slabs in the mid-mantle (Kong et al., 2022), which
increases slab buoyancy and thereby promotes stagnation.

The detection of the mid-mantle stagnant slabs mentioned
above largely benefit from long-wavelength seismic tomogra‐
phy. In addition to the large-scale structures, a growing body of
evidence from analyzing high-frequency waves, such as the S-
to-P waves (Fig. 1; Wang and He, 2020; He and Zheng, 2018;
Yang and He, 2015), suggests that small-scale heterogeneities
widely distribute in the mid-mantle (Kaneshima, 2019; Waszek
et al., 2018). They are characterized with higher density but
lower velocity relative to the ambient mantle (Yuan et al.,
2021; Zhang et al., 2020; Haugland et al., 2017; Niu, 2014;
Niu et al., 2003). Their thickness varies from ~9 to 20 km and
S-wave velocity decreases by a wide range of ~1.6% to 12.4%.
According to their elastic properties, they have been interpret‐
ed to be a fragment of basaltic oceanic crust undergoing post-
stishovite phase transition. This inference has been supported
by a variety of mineral physics experiments (e.g., Zhang et al.,
2022; Wang et al., 2020; Tsuchiya, 2011). All the evidence
seemingly indicates that the mid-mantle short-wavelength
structures can be largely attributed to the basaltic oceanic crust.

In addition to the heterogeneities with various scales in
the mid-mantle, emerging seismic evidence suggests the pres‐
ence of seismic anisotropy at these depths (e. g., Kong et al.,
2022; Ferreira et al., 2019; Lynner and Long, 2015; Mohiud‐
din et al., 2015; Nowacki et al., 2015; Foley and Long, 2011;
Wookey et al., 2002), in which radial anisotropy has been
largely attributed to the layering of slab materials (Faccenda et
al., 2019), whereas azimuthal anisotropy was linked, for the
first time, to frozen-in anisotropy of meta-stable olivine inside
a slab (Kong et al., 2022). The meta-stable olivine model is at‐
tractive because it explains the azimuthal anisotropy and facili‐
tates slab stagnation in the mid-mantle as well. Before we ful‐
ly accept this model, we should understand the other alterna‐
tives. The most competing mechanism for the mid-mantle an‐
isotropy is the crystallographic preferred orientation (CPO) of
bridgmanite―the dominant mineral in the mid-mantle (Tsujino
et al., 2016). It is true that sub-vertically propagating SK(K)S
waves cannot lead to apparent splitting as argued by Kong et
al. (2022). In reality, however, a dipping downgoing slab may
induce a tilted mantle flow (Fig. 1), leading to a tilted CPO,
which may be able to account for the azimuthal anisotropy to
some extent.

Although the mid-mantle anisotropy solely related to meta-
stable olivine seemingly requires more investigations, this
model raises a question as to whether it can, in part, accounts
for the small-scale heterogeneity as mentioned above. We can‐
not rule out this possibility because meta-stable olivine inside a
mid-mantle slab is certainly characterized by a low-velocity
layer, which is very resemblant to the seismological observa‐
tions of scatterers. In particular, the resolved thickness of the
scatterers can be up to 20 km, which is larger than ~7 km thick‐
ness of a typical oceanic crust, although a thicker crust can be
expected due to higher potential temperature in the past. Such
a 20 km thick anomaly, however, may be easier to be produced
by a structure comprising meta-stable olivine, depending on the
slab’s thermal history. As such, we cannot exclude the meta-
stable olivine as an alternative for explaining the small-scale
heterogeneities until more solid evidence emerges. It becomes
clear that the high thermal conductivity of stishovite promotes
rapid warming of a sinking slab (Hsieh et al., 2022), while the
precise thermal conductivity of bridgmanite plays a more de‐
ciding role in the fate of meta-stable olivine inside a slab. Fu‐
ture multi-discipline cooperation will certainly advance our un‐
derstanding of the heterogeneities and seismic anisotropy in

∗Corresponding author: xiaobo.he@zjou.edu.cn
© China University of Geosciences (Wuhan) and Springer-Verlag
GmbH Germany, Part of Springer Nature 2022

Manuscript received May 23, 2022.
Manuscript accepted June 15, 2022.



Xiaobo He

the mid-mantle.
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Figure 1. A cartoon illustrating the possible existence of both the small-scale heterogeneities related to MORB or meta-stable olivine and seismic anisotropy

due to deformed bridgmanite or meta-stable olivine with a tilted CPO in the mid-mantle, detected by S-to-P wave (S wave is indicated with dashed red line,

whereas P wave is indicated with solid red line) and SK(K)S wave (indicated with purple line), respectively. The slab-entrained flow is indicated with short red

bars parallel to the downgoing slab fragment. The red star within the slab in the mantle transition zone indicates the intraslab event that generated the downgo‐

ing S-to-P wave.
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