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Abstract: The Tibetan Plateau, known as “the roof of the world” and “the third pole of the earth”, is a product of the collision between
India and Asia during the last ~50 Ma. The regional tectonics—in particular, growth and expansion of the plateau-has been attributed
primarily to deformation within the lithosphere. The role and pattern of the underlying asthenospheric flow, however, remain mostly
unaddressed. In light of recent seismic tomographic images and published seismic anisotropic descriptions of the upper mantle, here we
propose that an entrained mantle flow is likely to exist under Tibet, induced by the northward advancing Indian plate. The direction of
mantle flow is characterized by a gradual rotation from northward in the south to eastward in the north as a result of deflection by the
deep root of the Tarim block. The presence of an underlying mantle flow is not only able to account for the west-east oriented fast-axis of
seismic anisotropy in northern Tibet, but can also adequately explain the sporadic null splitting in southern Tibet. Specifically, the null
splitting results, at least in part, from upwellings of asthenospheric flow through tears of the underthrusting Indian plate that have been
revealed by various seismic observations. The mantle flow may in turn promote the block extrusion under Tibet that has been observed

in GPS measurements; hot asthenospheric upwellings may also lead to widespread post-collisional magmatism in southern Tibet.
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1. Introduction

It is widely accepted that the Tibetan Plateau, the highest and
largest topographic plateau on earth, forms as a direct con-
sequence of the collision of India with Asia that began during the
Cenozoic. The plateau thus represents a natural laboratory to
study continent-continent collision orogenesis on the Earth (e.g.,
Yin A and Harrison, 2000; Chung SL et al., 2005). Mantle dynamics
beneath the plateau may also play an important role in altering
regional and global climates (Molnar et al., 1993). Our current un-
derstanding of the regional tectonics has greatly benefitted from
numerous seismological investigations, and many achievements
have been obtained; e.g., an inefficient Sn and low Pn zone has
been seen in the Songpan-Garzé terrane (Barazangi and Ni, 1982),
which may suggest removal of lower lithosphere in response to
the Indian plate’s northward indention (Owens and Zandt, 1997).
The subducting Indian plate has been intensely fragmented, lead-
ing to tearing of the lithosphere (e.g. Chen Y et al., 2015; Liang XF
et al., 2016; Li JT and Song XD, 2018). A low-velocity layer exists
pervasively in the crust (e.g., Shapiro et al, 2004; Guo Z et al,,
2009), which may be a manifestation of crustal flow, promoting
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expansion of the plateau (e.g., Royden et al., 1997; Liu QY et al,,
2014).

In particular, the characteristics of lithospheric deformation under
Tibet have been largely revealed by constraining the seismic an-
isotropy (e.g., McNamara et al., 1994; Hirn et al., 1995; Lavé et al.,
1996; Fu et al.,, 2008; Heintz et al., 2009; Chen WP et al., 2010; Zhao
JM et al,, 2014; Wu J et al., 2015; Wu CL et al., 2015; Singh et al.,
2016)—the directional and polarizational dependence of seismic
wave speeds, which is a consequence of strain-induced lattice-
preferred orientation (LPO) of mineral in the Earth’s mantle
(Zhang SQ and Karato, 1995). The most important process produ-
cing the LPO is simple shear due to flow gradients existing in the
asthenosphere, leading to a fast direction that exhibits parallel to
the flow direction, whereas lithospheric compression causes an-
isotropy with a fast direction parallel to the strike of mountain
belts. Measurement of seismic anisotropy thus represents per-
haps the best tool available to directly probe the past and present
patterns of deformation at depth (Long and Silver, 2009). Specific-
ally, a change in deformational style-from simple shear on the
Tibetan Plateau, transitioning to pure shear in surrounding re-
gions-has been suggested by jointly analyzing seismic anisotrop-
ic measurements and GPS observations (Wang CY et al., 2008).
Depth-variant azimuthal anisotropy in Tibet has been revealed by
surface wave tomography (Pandey et al., 2015). Co-existing chan-
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nel flow and pure-shear crustal thickening have been suggested
by surface-wave dispersion analysis (Agius and Lebedev, 2017). It
is worth mentioning that shear-wave splitting has a high lateral
resolution, but is subject to poor depth resolution, whereas sur-
face-wave study has high depth resolution, but suffers from later-
al smearing, leading to poor horizontal resolution. Body wave an-
isotropic tomography seemingly can provide good resolution in
lateral and vertical directions simultaneously; it has also been em-
ployed to explore internal deformation of the lithosphere (Zhang
H et al.,, 2016, 2017). In addition, two layers of anisotropy beneath
western Tibet and the southern Lhasa Terrane have been ob-
served by shear-wave splitting analysis, suggesting existence of
crustal flow as the cause of the upper layer anisotropy (Gao SS and
Liu KH, 2009; Wu J et al,, 2015). It is worth noting that receiver
function analysis has shown its importance in resolving features of
anisotropic structure in the crust-in particular, in regions subject
to strong crustal deformation, such as Tibet (e.g., Levin et al., 2008;
Liu Z and Park, 2017). However, previous studies have tended to
focus on lithospheric deformation (e.g., Zhao JM et al., 2010), leav-
ing the underlying asthenospheric flow mostly unaddressed.
Moreover, a recent dynamic model of the India-Asia collision em-
phasizes the role of asthenospheric flow underneath continents
(Jolivet et al,, 2018). Hence, understanding mantle flow may offer
improved explanations of tectonic processes (Jolivet et al., 2018).

Observations of a W-E fast-axis of anisotropy in the upper mantle
have suggested that an eastward flow takes place in northern
Tibet (e.g., Owens and Zandt, 1997). However, the origin of such a
W-E-oriented mantle flow has not been discussed. In addition, the
null splitting in southern Tibet has often been attributed to down-
welling of the Indian plate (e.g., Sandvol et al., 1997), but it is very
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unclear how the fossil fabric in the Indian mantle lithosphere (IML)
could produce sporadic occurrences of null splitting and a gradu-
al rotation of fast-axis of non-null splitting from northward to
eastward. Therefore, we suggest existence of other causes, which,
if not completely explaining, may be major factors in the wide-
spread null splitting observed in southern Tibet.

To address these questions of upper mantle anisotropic signa-
tures, we collect previous seismic anisotropic measurements and
compare them to recent tomographic images. Results of this ana-
lysis leads us to propose a mantle flow model to explain the aniso-
tropic observations; we also discuss the related tectonics and dy-
namics in Tibet.

2. Tectonic Setting in Tibet and Tearing of the IML

The Tibetan plateau is separated from the Himalayas by the
Yarlung-Zangbo suture (Figure 1). The plateau consists primarily
of three terranes that are, from south to north, the Lhasa, Qi-
angtang, and Songpan-Garzé terranes, separated from each other
by the Bangong-Nujiang and Jinsha sutures, respectively (Figure 1).
The plateau is characterized by high elevations and remarkable
crustal thickness that is twice that of normal continental crust
(Molnar et al., 1993).

Our current understanding of the present-day lithospheric struc-
ture of the Tibetan plateau has been greatly advanced by a series
of projects like the INDEPTH (Nelson et al., 1996), INDEPTH III
(Haines et al.,, 2003; Tilmann et al., 2003); for instance, a partially
molten zone in the middle crust of southern Tibet has been detec-
ted (e.g., Owens and Zandt, 1997; Yuan XH et al., 1997). In the
southern plateau, it is often believed that the IML has underthrust
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Figure 1. Comparison of S-velocity image at 135-km depth from surface-wave tomography (Bao XW et al., 2015) and previous shear wave
splitting measurements (from http://splitting.gm.univ-montp2.fr/DB/public/searchdatabase.html). Circles show null measurements. The black
dotted line denotes the approximate location of the northern frontier of the Indian mantle lithosphere (IML-F). The black dashed lines denote the
locations of the three possible tears (T1 to T3) of the IML. The arrow indicates the Indian plate motion. BNS, Bangong-Nujiang suture; HB,
Himalaya block; JS, Jinsha suture; LB, Lhasa block; QB, Qiangtang block; SGFB, Songpan-Garzé fold belt; YZS, Yarlung-Zangbo suture.

Zou Y et al.: A flow rotating from northward to eastward under Tibet
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Asia to as far north as the Bangong-Nujiang suture (e.g., Zhao JM
et al.,, 2010) and the lithospheric mantle root seems to be mostly
lost (e.g., Kind et al., 2002). In the north, a thin but complex litho-
spheric lid is situated beneath the Qiangtang and Songpan-Garzé
terranes; meanwhile, the Asian lithospheric mantle, too, seems to
underthrust the northern margin of the plateau (e.g., Kind et al.,
2002; Zhao WJ et al., 2011).

North-south trending rifts are widespread in southern Tibet and
Himalaya. Yin A (2000) was first to propose that the mantle litho-
sphere must have been involved in east-west extension. Recent
seismological studies have proven that tearing occurs in the IML
(e.g., Liang XF et al,, 2012; Chen Y et al., 2015; Liang XF et al., 2016;
Li JT and Song XD, 2018). Specifically, the subducted IML has been
torn into at least four pieces with different angles and northern
limits; in the east and west sides, the IML is shallower and extends
further, while in the middle is it steeper (Li JT and Song XD, 2018).

3. Spatial Variations of Splitting Parameters

We collected a total of 1244 measurements from previous studies
(Figure 1) and divided the study area into two regions based on
the characteristics of splitting measurements and also the tomo-
graphic images at the depth of 135 km. The two regions, roughly
north Tibet and south Tibet, are separated approximately at 32°N.
The measurements in the north are from 664 stations, while those
in the south are from 580 stations.

The synthesis of fast-axis data demonstrates that the W-E direc-
tion is abundant in northern Tibet, whereas a complex pattern is
seen in southern Tibet (Figure 1). Specifically, null splitting and
ambiguous polarization are widespread in south Tibet and the Hi-
malayas. A fast-axis rotation from N-S to W-E is noticeable in the
central Lhasa block (Figure 2). The splitting times in northern Tibet
are strikingly larger than those in southern Tibet (Figure 3). The
dominant splitting times in the north are in the 1-1.5 s. range; in
the south, times of 0.5-1 s. occur frequently. The former are much
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Figure 2. A close-up view of splitting results in the central Lhasa
block, south Tibet. A gradual rotation of the fast-axis from northward
to eastward is clearly evident, as indicated by the large red arrow.
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Figure 3. Histograms showing a comparison of splitting times
between northern Tibet and southern Tibet.

larger than the global average of 1.0 s (Silver, 1996); the latter are
significantly smaller. It appears that underplating of the Indian
plate significantly lowers the splitting times and complicates the
fast direction pattern. More precisely, simple and coherent split-
ting parameters are abundantly distributed beyond the litho-
spheric front of the Indian mantle (IML-F).

In addition, spatial correspondence between shear-wave splitting
times and shear-wave velocity images at the 135 km depth clearly
demonstrates that larger shear-wave splitting times preferentially
occur beyond the IML-F, while smaller values abundantly locate
within the IML-F, which is perhaps further indication that under-
plating of the Indian plate significantly lowers the splitting times,
and that splitting times are substantially enhanced by existence of
a single anisotropic layer with asthenospheric flow (Figure 4).

4. Discussion

4.1 Null Splitting in Southern Tibet

The null splitting in southern Tibet has often been attributed to
downwelling of the Indian plate (e.g., Sandvol et al, 1997).
However, if the null splitting is indeed due to Indian plate down-
welling, we should observe clustered occurrence in the locus of
downwelling instead of sporadic distribution; moreover, if the
fast-axis's rotation truly occurs in the lithosphere, what deforma-
tion mechanism can account for such rotation (Figure 2)? Hence,
we conclude that the source of anisotropy occurring in southern
Tibet is primarily from the underlying asthenosphere, even
though we cannot fully exclude contributions from downwelling
of the IML.

Accordingly, we suggest that the null splitting was developed by
upwellings of hot asthenosphere through tears. In other words, in
addition to the three major tears (T1 to T3 in Figure 1), there may
have been a large number of small tears within the underthrust
Indian plate (i.e., we propose that the IML has been fragmented
more intensely than envisaged by Liang XF et al. (2016)), because
the small fragments have escaped detection by seismic tomo-
graphy due to their size; such fragmentation could readily induce
hot upwelling, leading to sporadic null splitting under south Tibet.
This suggestion is supported by the spatial distribution of null
splittings, which shows that they seem to occur not only near the
major tears, such as T1, but also substantially far from the major

Zou Y et al.: A flow rotating from northward to eastward under Tibet
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Figure 4. Spatial correspondence between shear-wave splitting time and shear-wave velocity at 135 km depth. The larger shear-wave splitting
times (pluses) are found substantially beyond the IML-F, while the smaller values (circles) are located mostly within the IML-F, perhaps indicating
that underplating of the Indian plate significantly lowers the splitting times and that the existence of a single asthenospheric flow enhances the

splitting times.

tears (Figure 1). (Lack of detection, so far, of null splittings near T2
and T3 may be due to limited spatial coverage of stations.)
Moreover, the hot upwellings may also concurrently contribute to
widespread post-collisional magmatism in southern Tibet (e.g.,
Chung SL et al., 2005).

The null splitting is thus a direct consequence of upwellings. By
constrast, the large number of non-null splittings, but with small
delay times (< 1 s) in southern Tibet (Figure 4), are perhaps an in-
tegrated result of multiple layers with different oriented fast direc-
tions, as follows: the overriding Tibetan lithosphere at the top, the
underplating IML in the middle, and the entrained asthenosphere
at the bottom. Existence of multiple layers in southern Tibet has
been suggested by various studies; for instance, two layers of an-
isotropy beneath western Tibet and the southern Lhasa Terrane
have been observed by shear-wave splitting analysis, suggesting
existence of crustal flow as the cause of the upper layer aniso-
tropy (e.g., Gao SS and Liu KH, 2009; Wu J et al., 2015). The Tibetan
multi-layer anisotropic structure has also been revealed by sur-
face wave tomography (e.g., Pandey et al, 2015; Agius and
Lebedev, 2017) and P-wave azimuthal anisotropic tomography
(e.g., Zhang H et al.,, 2017). Overall, these observations support the
conclusion that a complex anisotropic structure has been de-
veloped due to the northward indenting of Indian plate under
Tibet. The small-scale anisotropic signatures will not be character-
ized until shear-wave splitting analysis is performed in conjunc-
tion with body-wave and surface-wave anisotropic tomography.

4.2 W-E Oriented Fast-Axis of Anisotropy in Northern
Tibet

The W-E fast direction with large delay times (>1 sec.) in northern

Tibet (Figure 4) has been attributed to squeezing of the astheno-

sphere by the northward IML beneath northern Tibet (e.g., Owens
and Zandt, 1997; Liang XF et al.,, 2012). A gradual fast direction ro-
tation from northward to eastward is seen near the IML-F (Figure 2),
but the lithosphere is too rigid to produce such a fast-axis rota-
tion, leaving the asthenosphere as the most likely candidate.
Hence, the asthenospheric materials in northern Tibet are thought
to be connected dynamically to the underlying flow below the
northward Indian plate. The flow system in Tibet is hence a result
of interaction of entrained flow with the flow in northern Tibet,
and the interaction occurs primarily near the IML-F (Figure 5).
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Figure 5. A sketch showing mantle flow deflected by the southern
Tarim root, leading to a rotation from northward to eastward. The
circle with a dot represents eastern moving flow, the straight arrow
indicates the un-deflected flow, and the bent arrow represents the
deflecting flow. The shadow zone depicts the IML-F where the fast
direction is rotating.

Zou Y et al.: A flow rotating from northward to eastward under Tibet



Geodynamic modeling has suggested that mantle flow associ-
ated with the India-Asia collision may play an important role in
tectonic processes below East Asia. Indian mantle flow may have
reached the Pacific border (Jolivet et al., 2018). It has been sugges-
ted that Cenozoic rifting and volcanism in eastern China links with
the lateral extrusion of the Indian asthenospheric mantle (Liu M et
al., 2004). Eastward Tibetan asthenospheric flow has been seen
around the southern Orods (Yu YJ and Chen Y, 2016), and the lat-
eral flow beneath the South China craton is thought to be driven
by both Pacific plate subduction and the India-Eurasia continent-
al collision (Gong JF and Chen YJ, 2013), though no direct correla-
tion of mantle flow beneath the North China craton to the India-
Eurasia collision has been suggested by SKS wave splitting meas-
urements (Zhao L etal., 2011).

The Tibetan block’s eastward extrusion in response to the inden-
tion of the Indian plate has long been suggested by simple experi-
ments with plasticine (Tapponnier et al., 1982). Relative to Eurasia,
GPS observations show that material within the plateau interior
moves roughly eastward with speeds that increase toward the
east (e.g., Zhang PZ et al,, 2004). Existence of eastward flow in
north Tibet may thus promote eastward motion of the block.

4.3 Entrainment of Flow Driving by the Northward Indian
Plate

Existence of asthenospheric flow entrained by the down-going
oceanic slab has been suggested by sub-slab seismic anisotropy
observations (e.g., Song and Kawakatsu, 2012), a suggestion sup-
ported also by geodynamic simulations (e.g., Liu LJ and Zhou Q,
2015). However, such a scenario in a continental subduction envir-
onment has not often been studied. Here, we propose that, ini-
tially, the entrained flow coupled with the down-going Neo-
Tethyan slab. After break-off with India, the Indian plate took over
the entrainment to drive continuous downward movement of the
underlying flow. The shallow subduction and existence of tears
promote voluminous northward flow (Figure 6). The northward
flow interacts with the flow deflected by the Tarim deep root, res-
ulting in a gradual rotation from northward to eastward, occur-
ring near the IML-F. It is worth mentioning that a flow system en-
trained between the subducting Tarim lithosphere and the thick
Kazakh lithospheric root has been proposed by Cherie et al.
(2016), based on shear-wave splitting analyses in Tian Shan. This
scenario seems to resemble the northern Tibet flow system, sup-
portingt the hypothesis that the asthenosphere plays an import-
antrole in explaining the observed azimuthal anisotropy in con-
tinent-continent collisional settings.

4.4 Implications for Post-Collisional Magmatism in
Southern Tibet

Post-collisional magmatism is widespread in Tibet, and its cause
has been attributed primarily to convective removal of Tibetan
lithospheric root and break-off from the Neo-Tethyan slab (e.g.,
Chung SL et al,, 2005). However, post-collisional magmatism in
the Himalayan and Lhasa blocks is thought to take place coevally
during the late Oligocene to Miocene (e.g., Chung SL et al., 2003;
Hou ZQ et al., 2004; Liu XC et al., 2016; Miller et al., 1999; Pan FB et
al., 2012; Searle et al., 1997; Zhang HF et al., 2004). This period's ig-
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Figure 6. A cartoon illustrating the tearing of the IML along with
entrained and deflected flow under Tibet. The large red arrows imply
flow in the asthenosphere, and the small pink arrows depict hot
asthenospheric upwellings. The thicknesses of overriding lithosphere
and underplating IML are not to scale. The small tears (perhaps not
seen by tomographic images due to limited resolutions) within the
segments of IML are exaggerated. The tearing model of the IML is
taken from the work by Li JT and Song XD (2018).

neous rocks in the Himalaya are composed of crust-derived leuco-
granites (e.g., Searle et al., 1997; Zhang HF et al., 2004), while the
coeval igneous rocks in the Lhasa block mainly comprise mantle-
derived ultrapotassic to potassic volcanics and crust-derived
adakite-like porphyrys and dykes (e.g., Chung SL et al., 2003; Hou
ZQ et al.,, 2004; Miller et al., 1999; Pan FB et al.,, 2012; Chen M et al.,
2017; Sun X et al, 2018). More importantly, the post-collisional
magmatism in the Lhasa block appears to be locally controlled by
NS-striking normal faulting systems (Hou ZQ et al., 2004), which
are suspected to associate with tears of the IML (Yin A, 2000).
Hence, hot asthenospheric upwellings through IML tears (Figure
6) are thus able adequately to explain post-collisional magmatism
in the Lhasa block. The widespread null splitting attributed to hot
upwellings in the Lhasa block thus in turn supports this notion. It
is worth mentioning that hot asthenospheric upwellings through
slab windows or tears have also been suggested to produce intra-
plate volcanism in other tectonic settings (e.g., Thorkelson et al.,
2011; Tang YC et al,, 2014).

5. Conclusion

In this study, we compare previously published shear-wave split-
ting measurements and a recent seismic tomographic image of
upper-mantle under Tibet, and suggest that an entrained flow,
driven by the northward indenting Indian plate, occurs perhaps
vigorously under Tibet. We propose that this flow suffers from a
deflection by the deep root of the Asian lithosphere, leading to a
rotation from northward to eastward. We further suggest that as-
thenospheric flow may play an appreciable role in facilitating
block extrusion and creating post-collision magmatisms in oro-
genic environments such as Tibet, due to continent-continent col-
lision. A future numerical modeling is necessary to validate our
predicted flow model under Tibet.

Zou Y et al.: A flow rotating from northward to eastward under Tibet
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