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Abstract: The Tibetan Plateau, known as “the roof of the world” and “the third pole of the earth”, is a product of the collision between
India and Asia during the last ~50 Ma. The regional tectonics–in particular, growth and expansion of the plateau–has been attributed
primarily to deformation within the lithosphere. The role and pattern of the underlying asthenospheric flow, however, remain mostly
unaddressed. In light of recent seismic tomographic images and published seismic anisotropic descriptions of the upper mantle, here we
propose that an entrained mantle flow is likely to exist under Tibet, induced by the northward advancing Indian plate. The direction of
mantle flow is characterized by a gradual rotation from northward in the south to eastward in the north as a result of deflection by the
deep root of the Tarim block. The presence of an underlying mantle flow is not only able to account for the west-east oriented fast-axis of
seismic anisotropy in northern Tibet, but can also adequately explain the sporadic null splitting in southern Tibet. Specifically, the null
splitting results, at least in part, from upwellings of asthenospheric flow through tears of the underthrusting Indian plate that have been
revealed by various seismic observations. The mantle flow may in turn promote the block extrusion under Tibet that has been observed
in GPS measurements; hot asthenospheric upwellings may also lead to widespread post-collisional magmatism in southern Tibet.
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1.  Introduction
It  is  widely  accepted  that  the  Tibetan  Plateau,  the  highest  and
largest topographic  plateau  on  earth,  forms  as  a  direct  con-
sequence of the collision of India with Asia that began during the
Cenozoic.  The  plateau  thus  represents  a  natural  laboratory  to
study continent-continent  collision orogenesis  on the Earth (e.g.,
Yin A and Harrison, 2000; Chung SL et al., 2005). Mantle dynamics
beneath  the  plateau  may  also  play  an  important  role  in  altering
regional and global climates (Molnar et al., 1993). Our current un-
derstanding of the regional tectonics has greatly benefitted from
numerous  seismological  investigations,  and  many  achievements
have  been  obtained;  e.g.,  an  inefficient  Sn  and  low  Pn  zone  has
been seen in the Songpan-Garzê terrane (Barazangi and Ni, 1982),
which  may  suggest  removal  of  lower  lithosphere  in  response  to
the Indian plate’s northward indention (Owens and Zandt, 1997).
The subducting Indian plate has been intensely fragmented, lead-
ing to tearing of the lithosphere (e.g. Chen Y et al., 2015; Liang XF
et  al.,  2016; Li  JT  and  Song  XD,  2018).  A  low-velocity  layer  exists
pervasively  in  the  crust  (e.g., Shapiro  et  al.,  2004; Guo  Z  et  al.,
2009),  which  may  be  a  manifestation  of  crustal  flow,  promoting

expansion  of  the  plateau  (e.g., Royden  et  al.,  1997; Liu  QY  et  al.,
2014).

In particular, the characteristics of lithospheric deformation under

Tibet have been largely  revealed by  constraining the seismic  an-

isotropy (e.g., McNamara et al.,  1994; Hirn et al.,  1995; Lavé et al.,

1996; Fu et al., 2008; Heintz et al., 2009; Chen WP et al., 2010; Zhao

JM  et  al.,  2014; Wu  J  et  al.,  2015; Wu  CL  et  al.,  2015; Singh  et  al.,

2016)—the  directional  and  polarizational  dependence  of  seismic

wave  speeds,  which  is  a  consequence  of  strain-induced  lattice-

preferred  orientation  (LPO)  of  mineral  in  the  Earth’s  mantle

(Zhang SQ and Karato, 1995). The most important process produ-

cing the LPO is simple shear due to flow gradients existing in the

asthenosphere, leading to a fast direction that exhibits parallel to

the flow  direction,  whereas  lithospheric  compression  causes  an-

isotropy  with  a  fast  direction  parallel  to  the  strike  of  mountain

belts. Measurement  of  seismic  anisotropy  thus  represents  per-

haps the best tool available to directly probe the past and present

patterns of deformation at depth (Long and Silver, 2009). Specific-

ally,  a  change  in  deformational  style–from  simple  shear  on  the

Tibetan Plateau,  transitioning  to  pure  shear  in  surrounding  re-

gions–has been suggested by jointly analyzing seismic anisotrop-

ic  measurements  and  GPS  observations  (Wang  CY  et  al.,  2008).

Depth-variant azimuthal anisotropy in Tibet has been revealed by

surface wave tomography (Pandey et al., 2015). Co-existing chan-
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nel  flow  and  pure-shear  crustal  thickening  have  been  suggested
by surface-wave dispersion analysis (Agius and Lebedev, 2017). It
is  worth  mentioning  that  shear-wave  splitting  has  a  high  lateral
resolution, but  is  subject  to  poor  depth  resolution,  whereas  sur-
face-wave study has high depth resolution, but suffers from later-
al smearing, leading to poor horizontal resolution. Body wave an-
isotropic  tomography  seemingly  can  provide  good  resolution  in
lateral and vertical directions simultaneously; it has also been em-
ployed to explore internal deformation of the lithosphere (Zhang
H et al., 2016, 2017). In addition, two layers of anisotropy beneath
western Tibet  and  the  southern  Lhasa  Terrane  have  been  ob-
served  by  shear-wave  splitting  analysis,  suggesting  existence  of
crustal flow as the cause of the upper layer anisotropy (Gao SS and
Liu  KH,  2009; Wu  J  et  al.,  2015).  It  is  worth  noting  that  receiver
function analysis has shown its importance in resolving features of
anisotropic  structure in the crust–in particular,  in  regions subject
to strong crustal deformation, such as Tibet (e.g., Levin et al., 2008;
Liu  Z  and Park,  2017).  However,  previous  studies  have tended to
focus on lithospheric deformation (e.g., Zhao JM et al., 2010), leav-
ing  the  underlying  asthenospheric  flow  mostly  unaddressed.
Moreover, a recent dynamic model of the India-Asia collision em-
phasizes  the  role  of  asthenospheric  flow  underneath  continents
(Jolivet et al.,  2018). Hence, understanding mantle flow may offer
improved explanations of tectonic processes (Jolivet et al., 2018).

Observations of a W-E fast-axis of anisotropy in the upper mantle
have  suggested  that  an  eastward  flow  takes  place  in  northern
Tibet (e.g., Owens and Zandt, 1997). However, the origin of such a
W-E-oriented mantle flow has not been discussed. In addition, the
null splitting in southern Tibet has often been attributed to down-
welling of the Indian plate (e.g., Sandvol et al., 1997), but it is very

unclear how the fossil fabric in the Indian mantle lithosphere (IML)

could produce sporadic occurrences of null splitting and a gradu-

al  rotation  of  fast-axis  of  non-null  splitting  from  northward  to

eastward. Therefore, we suggest existence of other causes, which,

if not  completely  explaining,  may  be  major  factors  in  the  wide-

spread null splitting observed in southern Tibet.

To address  these  questions  of  upper  mantle  anisotropic  signa-

tures,  we collect  previous seismic anisotropic measurements and

compare them to recent tomographic images. Results of this ana-

lysis leads us to propose a mantle flow model to explain the aniso-

tropic observations; we also discuss the related tectonics and dy-

namics in Tibet.

2.  Tectonic Setting in Tibet and Tearing of the IML
The  Tibetan  plateau  is  separated  from  the  Himalayas  by  the

Yarlung-Zangbo  suture  (Figure  1).  The  plateau  consists  primarily

of three  terranes  that  are,  from  south  to  north,  the  Lhasa,  Qi-

angtang, and Songpan-Garzê terranes, separated from each other

by the Bangong-Nujiang and Jinsha sutures, respectively (Figure 1).

The  plateau  is  characterized  by  high  elevations  and  remarkable

crustal  thickness  that  is  twice  that  of  normal  continental  crust

(Molnar et al., 1993).

Our current  understanding  of  the  present-day  lithospheric  struc-

ture of the Tibetan plateau has been greatly advanced by a series

of  projects  like  the  INDEPTH  (Nelson  et  al.,  1996), INDEPTH  Ⅲ

(Haines  et  al.,  2003; Tilmann  et  al.,  2003);  for  instance,  a  partially

molten zone in the middle crust of southern Tibet has been detec-

ted  (e.g., Owens  and  Zandt,  1997; Yuan  XH  et  al.,  1997).  In  the

southern plateau, it is often believed that the IML has underthrust
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Figure 1.   Comparison of S-velocity image at 135-km depth from surface-wave tomography (Bao XW et al., 2015) and previous shear wave

splitting measurements (from http://splitting.gm.univ-montp2.fr/DB/public/searchdatabase.html). Circles show null measurements. The black

dotted line denotes the approximate location of the northern frontier of the Indian mantle lithosphere (IML-F). The black dashed lines denote the

locations of the three possible tears (T1 to T3) of the IML. The arrow indicates the Indian plate motion. BNS, Bangong-Nujiang suture; HB,

Himalaya block; JS, Jinsha suture; LB, Lhasa block; QB, Qiangtang block; SGFB, Songpan-Garzê fold belt; YZS, Yarlung-Zangbo suture.
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Asia to as far north as the Bangong-Nujiang suture (e.g., Zhao JM

et al.,  2010) and the lithospheric mantle root seems to be mostly

lost (e.g., Kind et al., 2002). In the north, a thin but complex litho-

spheric lid is situated beneath the Qiangtang and Songpan-Garzê

terranes; meanwhile, the Asian lithospheric mantle, too, seems to

underthrust  the  northern  margin  of  the  plateau  (e.g., Kind  et  al.,

2002; Zhao WJ et al., 2011).

North-south  trending  rifts  are  widespread  in  southern  Tibet  and

Himalaya. Yin A (2000) was first to propose that the mantle litho-

sphere  must  have  been  involved  in  east-west  extension.  Recent

seismological  studies  have proven that  tearing occurs  in  the IML

(e.g., Liang XF et al., 2012; Chen Y et al., 2015; Liang XF et al., 2016;

Li JT and Song XD, 2018). Specifically, the subducted IML has been

torn  into  at  least  four  pieces  with  different  angles  and  northern

limits; in the east and west sides, the IML is shallower and extends

further, while in the middle is it steeper (Li JT and Song XD, 2018).

3.  Spatial Variations of Splitting Parameters
We collected a total of 1244 measurements from previous studies

(Figure  1)  and  divided  the  study  area  into  two  regions  based  on

the characteristics  of  splitting measurements  and also  the tomo-

graphic images at the depth of 135 km. The two regions, roughly

north Tibet and south Tibet, are separated approximately at 32°N.

The measurements in the north are from 664 stations, while those

in the south are from 580 stations.

The synthesis  of  fast-axis  data  demonstrates  that  the  W-E  direc-
tion is  abundant in northern Tibet,  whereas a complex pattern is
seen  in  southern  Tibet  (Figure  1).  Specifically,  null  splitting  and
ambiguous polarization are widespread in south Tibet and the Hi-
malayas.  A  fast-axis  rotation from N-S to W-E is  noticeable  in  the
central Lhasa block (Figure 2). The splitting times in northern Tibet
are  strikingly  larger  than  those  in  southern  Tibet  (Figure  3).  The
dominant splitting times in the north are in the 1–1.5 s.  range; in
the south, times of 0.5–1 s. occur frequently. The former are much

larger than the global average of 1.0 s (Silver, 1996); the latter are
significantly  smaller.  It  appears  that  underplating  of  the  Indian
plate  significantly  lowers  the  splitting times  and complicates  the
fast direction  pattern.  More  precisely,  simple  and  coherent  split-
ting parameters  are  abundantly  distributed  beyond  the  litho-
spheric front of the Indian mantle (IML-F).

In addition, spatial correspondence between shear-wave splitting
times and shear-wave velocity images at the 135 km depth clearly
demonstrates that larger shear-wave splitting times preferentially
occur  beyond  the  IML-F,  while  smaller  values  abundantly  locate
within the  IML-F,  which  is  perhaps  further  indication  that  under-
plating of the Indian plate significantly lowers the splitting times,
and that splitting times are substantially enhanced by existence of
a single anisotropic layer with asthenospheric flow (Figure 4).

4.  Discussion

4.1  Null Splitting in Southern Tibet
The  null  splitting  in  southern  Tibet  has  often  been  attributed  to
downwelling  of  the  Indian  plate  (e.g., Sandvol  et  al.,  1997).
However, if  the null splitting is indeed due to Indian plate down-
welling,  we  should  observe  clustered  occurrence  in  the  locus  of
downwelling  instead  of  sporadic  distribution;  moreover,  if  the
fast-axis’s rotation truly  occurs  in  the lithosphere,  what  deforma-
tion mechanism can account for such rotation (Figure 2)? Hence,
we conclude that  the source of  anisotropy occurring in southern
Tibet  is  primarily  from  the  underlying  asthenosphere,  even
though we cannot fully  exclude contributions from downwelling
of the IML.

Accordingly, we suggest that the null splitting was developed by
upwellings of hot asthenosphere through tears. In other words, in
addition to the three major tears (T1 to T3 in Figure 1), there may
have  been  a  large  number  of  small  tears  within  the  underthrust
Indian  plate  (i.e.,  we  propose  that  the  IML  has  been  fragmented
more intensely than envisaged by Liang XF et al. (2016)), because
the small  fragments  have  escaped  detection  by  seismic  tomo-
graphy due to their size; such fragmentation could readily induce
hot upwelling, leading to sporadic null splitting under south Tibet.
This  suggestion  is  supported  by  the  spatial  distribution  of  null
splittings, which shows that they seem to occur not only near the
major  tears,  such  as  T1,  but  also  substantially  far  from  the  major
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Figure 2.   A close-up view of splitting results in the central Lhasa

block, south Tibet. A gradual rotation of the fast-axis from northward

to eastward is clearly evident, as indicated by the large red arrow.
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Figure 3.   Histograms showing a comparison of splitting times

between northern Tibet and southern Tibet.
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tears (Figure 1). (Lack of detection, so far, of null splittings near T2
and  T3  may  be  due  to  limited  spatial  coverage  of  stations.)
Moreover, the hot upwellings may also concurrently contribute to
widespread  post-collisional  magmatism  in  southern  Tibet  (e.g.,
Chung SL et al., 2005).

The  null  splitting  is  thus  a  direct  consequence  of  upwellings.  By

constrast,  the large number of  non-null  splittings,  but  with small

delay times (< 1 s) in southern Tibet (Figure 4), are perhaps an in-

tegrated result of multiple layers with different oriented fast direc-

tions, as follows: the overriding Tibetan lithosphere at the top, the

underplating IML in the middle, and the entrained asthenosphere

at  the  bottom.  Existence  of  multiple  layers  in  southern  Tibet  has

been suggested by various studies; for instance, two layers of an-

isotropy  beneath  western  Tibet  and  the  southern  Lhasa  Terrane

have been observed by shear-wave splitting analysis,  suggesting

existence of  crustal  flow  as  the  cause  of  the  upper  layer  aniso-

tropy (e.g., Gao SS and Liu KH, 2009; Wu J et al., 2015). The Tibetan

multi-layer anisotropic  structure  has  also  been  revealed  by  sur-

face  wave  tomography  (e.g., Pandey  et  al.,  2015; Agius  and

Lebedev,  2017)  and  P-wave  azimuthal  anisotropic  tomography

(e.g., Zhang H et al., 2017). Overall, these observations support the

conclusion that  a  complex  anisotropic  structure  has  been  de-

veloped  due  to  the  northward  indenting  of  Indian  plate  under

Tibet. The small-scale anisotropic signatures will not be character-

ized until  shear-wave  splitting  analysis  is  performed  in  conjunc-

tion with body-wave and surface-wave anisotropic tomography.

4.2  W-E Oriented Fast-Axis of Anisotropy in Northern

Tibet
The W-E fast direction with large delay times (>1 sec.) in northern

Tibet (Figure 4) has been attributed to squeezing of the astheno-

sphere by the northward IML beneath northern Tibet (e.g., Owens

and Zandt, 1997; Liang XF et al., 2012). A gradual fast direction ro-

tation from northward to eastward is seen near the IML-F (Figure 2),

but the  lithosphere  is  too  rigid  to  produce  such  a  fast-axis  rota-

tion,  leaving  the  asthenosphere  as  the  most  likely  candidate.

Hence, the asthenospheric materials in northern Tibet are thought

to  be  connected  dynamically  to  the  underlying  flow  below  the

northward Indian plate. The flow system in Tibet is hence a result

of  interaction  of  entrained  flow  with  the  flow  in  northern  Tibet,

and the interaction occurs primarily near the IML-F (Figure 5).
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Figure 4.   Spatial correspondence between shear-wave splitting time and shear-wave velocity at 135 km depth. The larger shear-wave splitting

times (pluses) are found substantially beyond the IML-F, while the smaller values (circles) are located mostly within the IML-F, perhaps indicating

that underplating of the Indian plate significantly lowers the splitting times and that the existence of a single asthenospheric flow enhances the

splitting times.
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Figure 5.   A sketch showing mantle flow deflected by the southern

Tarim root, leading to a rotation from northward to eastward. The

circle with a dot represents eastern moving flow, the straight arrow

indicates the un-deflected flow, and the bent arrow represents the

deflecting flow. The shadow zone depicts the IML-F where the fast

direction is rotating.
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Geodynamic modeling  has  suggested  that  mantle  flow  associ-

ated  with  the  India-Asia  collision  may  play  an  important  role  in

tectonic processes below East Asia.  Indian mantle flow may have

reached the Pacific border (Jolivet et al., 2018). It has been sugges-

ted that Cenozoic rifting and volcanism in eastern China links with

the lateral extrusion of the Indian asthenospheric mantle (Liu M et

al.,  2004).  Eastward  Tibetan  asthenospheric  flow  has  been  seen

around the southern Orods (Yu YJ and Chen Y, 2016), and the lat-

eral flow beneath the South China craton is thought to be driven

by both Pacific plate subduction and the India-Eurasia continent-

al collision (Gong JF and Chen YJ, 2013), though no direct correla-

tion of mantle flow beneath the North China craton to the India-

Eurasia collision has been suggested by SKS wave splitting meas-

urements (Zhao L et al., 2011).

The Tibetan block’s eastward extrusion in response to the inden-

tion of the Indian plate has long been suggested by simple experi-

ments with plasticine (Tapponnier et al., 1982). Relative to Eurasia,

GPS  observations  show  that  material  within  the  plateau  interior

moves  roughly  eastward  with  speeds  that  increase  toward  the

east  (e.g., Zhang  PZ  et  al.,  2004).  Existence  of  eastward  flow  in

north Tibet may thus promote eastward motion of the block.

4.3  Entrainment of Flow Driving by the Northward Indian

Plate
Existence  of  asthenospheric  flow  entrained  by  the  down-going

oceanic  slab  has  been  suggested  by  sub-slab  seismic  anisotropy

observations (e.g., Song and Kawakatsu, 2012), a suggestion sup-

ported  also  by  geodynamic  simulations  (e.g., Liu  LJ  and  Zhou  Q,

2015). However, such a scenario in a continental subduction envir-

onment has  not  often  been  studied.  Here,  we  propose  that,  ini-

tially,  the  entrained  flow  coupled  with  the  down-going  Neo-

Tethyan slab. After break-off with India, the Indian plate took over

the entrainment to drive continuous downward movement of the

underlying  flow.  The  shallow  subduction  and  existence  of  tears

promote  voluminous  northward  flow  (Figure  6).  The  northward

flow interacts with the flow deflected by the Tarim deep root, res-

ulting in  a  gradual  rotation  from  northward  to  eastward,  occur-

ring near the IML-F. It is worth mentioning that a flow system en-

trained  between  the  subducting  Tarim  lithosphere  and  the  thick

Kazakh  lithospheric  root  has  been  proposed  by Cherie  et  al.

(2016),  based on shear-wave splitting analyses  in  Tian  Shan.  This

scenario seems to resemble the northern Tibet flow system, sup-

portingt the hypothesis  that  the asthenosphere plays  an import-

ant role  in  explaining  the  observed  azimuthal  anisotropy  in  con-

tinent-continent collisional settings.

4.4  Implications for Post-Collisional Magmatism in

Southern Tibet
Post-collisional  magmatism  is  widespread  in  Tibet,  and  its  cause

has  been  attributed  primarily  to  convective  removal  of  Tibetan

lithospheric  root  and  break-off  from  the  Neo-Tethyan  slab  (e.g.,

Chung  SL  et  al.,  2005).  However,  post-collisional  magmatism  in

the Himalayan and Lhasa blocks is thought to take place coevally

during the late Oligocene to Miocene (e.g., Chung SL et al.,  2003;

Hou ZQ et al., 2004; Liu XC et al., 2016; Miller et al., 1999; Pan FB et

al., 2012; Searle et al., 1997; Zhang HF et al., 2004). This period’s ig-

neous rocks in the Himalaya are composed of crust-derived leuco-

granites (e.g., Searle et al.,  1997; Zhang HF et al.,  2004), while the

coeval igneous rocks in the Lhasa block mainly comprise mantle-

derived  ultrapotassic  to  potassic  volcanics  and  crust-derived

adakite-like porphyrys and dykes (e.g., Chung SL et al.,  2003; Hou

ZQ et al., 2004; Miller et al., 1999; Pan FB et al., 2012; Chen M et al.,

2017; Sun  X  et  al.,  2018).  More  importantly,  the  post-collisional

magmatism in the Lhasa block appears to be locally controlled by

NS-striking  normal  faulting  systems  (Hou  ZQ  et  al.,  2004),  which

are  suspected  to  associate  with  tears  of  the  IML  (Yin  A,  2000).

Hence,  hot  asthenospheric  upwellings  through  IML  tears  (Figure

6) are thus able adequately to explain post-collisional magmatism

in the Lhasa block. The widespread null splitting attributed to hot

upwellings in the Lhasa block thus in turn supports this notion. It

is worth mentioning that hot asthenospheric upwellings through

slab windows or tears have also been suggested to produce intra-

plate  volcanism  in  other  tectonic  settings  (e.g., Thorkelson  et  al.,

2011; Tang YC et al., 2014).

5.  Conclusion
In this  study,  we compare previously  published shear-wave split-

ting  measurements  and  a  recent  seismic  tomographic  image  of

upper-mantle  under  Tibet,  and  suggest  that  an  entrained  flow,

driven  by  the  northward  indenting  Indian  plate,  occurs  perhaps

vigorously  under  Tibet.  We  propose  that  this  flow  suffers  from  a

deflection by the deep root of the Asian lithosphere, leading to a

rotation from northward to eastward. We further suggest that as-

thenospheric  flow  may  play  an  appreciable  role  in  facilitating

block extrusion  and  creating  post-collision  magmatisms  in  oro-

genic environments such as Tibet, due to continent-continent col-

lision.  A  future  numerical  modeling  is  necessary  to  validate  our

predicted flow model under Tibet.

N

 
Figure 6.   A cartoon illustrating the tearing of the IML along with

entrained and deflected flow under Tibet. The large red arrows imply

flow in the asthenosphere, and the small pink arrows depict hot

asthenospheric upwellings. The thicknesses of overriding lithosphere

and underplating IML are not to scale. The small tears (perhaps not

seen by tomographic images due to limited resolutions) within the

segments of IML are exaggerated. The tearing model of the IML is

taken from the work by Li JT and Song XD (2018).
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